wle.wrappednormal(x, mu, rho, sd, K, boot = 30, group, num.sol = 1, raf = "HD", smooth = 0.0031, tol = 10^(-6), equal = 10^(-3), min.sd = 0.001, min.k = 10, max.iter = 100, use.smooth = TRUE, alpha=NULL, p = 2,
verbose = FALSE, control.circular=list())
"print"(x, digits = max(3, getOption("digits") - 3), ...)circular. sd) is
considered known.rho) is
considered known.raf="HD": Hellinger Distance RAF,
raf="NED": Negative Exponential Disparity RAF,
raf="SCHI2": Symmetric Chi-Squared Disparity RAF.
tol).sd parameter.TRUE a smoothed model is used,
default is TRUE.NULL overrides the value of p. See the next argument p. This is a different
parameterization, alpha=-1/2 provides Hellinger Distance RAF,
alpha=-1 provides Kullback-Leibler RAF and alpha=-2
provides Neyman's Chi-Square RAF.raf="HD". p=2
provide Hellinger Distance RAF, p=-1
provide Kullback-Leibler RAF and p=Inf provide Neyman's
Chi-Square RAF.TRUE warnings are printed.mu)print.wle.vonmises.num.sol > 1 then mu may have length greater than 1, i.e, one value for each root found.num.sol > 1 then rho may have length
greater than 1, i.e, one value for each root found.num.sol > 1 then sd may have length
greater than 1, i.e, one value for each root found.max.iter iteration are reached.p and raf will be change in the future. See
the reference below for the definition of all the RAF.
circular, mle.wrappednormal.
x <- c(rwrappednormal(n=50, mu=circular(0), sd=1), rwrappednormal(n=5, mu=circular(pi/2), sd=0.5))
wle.wrappednormal(x, smooth=1/20, group=5)
Run the code above in your browser using DataLab