Learn R Programming

gencve (version 0.3)

yhat_gel: Elastic Net Regression Prediction

Description

Fit regression using 10-fold CV with the 1 standard deviation rule and compute predictions.

Usage

yhat_gel(dfTrain, dfTest, alpha = 1)

Arguments

dfTrain
Data frame for training data. Last column must be the output variable.
dfTest
Data frame for test data. Last column must be the output variable.
alpha
Must be in [0,1], alpha=1 for LASSO (default), alpha=0 for ridge regression. Another recommended choice is alpha=0.5.

Value

Examples

Run this code
Xy <- prostate
X <- prostate[,-9]
y <- prostate[,9]
n <- length(y)
d <- 10
set.seed(777513)
iTe <- sample(n, size=d)
iTr <- (1:n)[!match(1:n, iTe, nomatch = 0) > 0]
trdf <- data.frame(X[iTr,], y=y[iTr]) #X, y already defined
tedf <- data.frame(X[iTe,], y=y[iTe])
yhat_gel(trdf, tedf)

Run the code above in your browser using DataLab