Learn R Programming

gencve (version 0.3)

General Cross Validation Engine

Description

Engines for cross-validation of many types of regression and class prediction models are provided. These engines include built-in support for 'glmnet', 'lars', 'plus', 'MASS', 'rpart', 'C50' and 'randomforest'. It is easy for the user to add other regression or classification algorithms. The 'parallel' package is used to improve speed. Several data generation algorithms for problems in regression and classification are provided.

Copy Link

Version

Install

install.packages('gencve')

Monthly Downloads

19

Version

0.3

License

GPL (>= 2)

Maintainer

Last Published

April 11th, 2016

Functions in gencve (0.3)

gencve-package

General Cross Validation Engine \Sexpr[results=rd,stage=build]{tools:::Rd_package_title("#1")}gencveGeneral Cross Validation Engine
Detroit

Detroit Homicide Data for 1961-73
smape

Mean Absolute Percentage Error
rxor

Random XOR Samples
vifx

Variance Inflation Factor
yh_CART

CART Prediction
kyphosis

Data on Children who have had Corrective Spinal Surgery
SinghTest

Singh Prostate Microarray Test Data
yh_kNN

kNN or NN prediction
churn

Customer Churn Data
yh_logistic

Logistic Regression and Regularized Logistic Regression Prediction
featureSelect

Feature Select For Wide Data
yhat_gel

Elastic Net Regression Prediction
yh_qda

QDA Prediction
mse

Mean Square Error Loss
mae

Mean Absolute Error
kNN_MLE

MLE k in kNN
rdigitsBFOS

BFOS Digit Recognition Problem
ShaoReg

Synthetic Regression Data
gcv

Estimate EPE Using Delete-d Cross-Validation
yhat_step

Backward Stagewise Regression with AIC or BIC
kNN_LOOCV

Select k with Leave-one-out CV
yhat_CART

CART regression prediction
misclassificationrate

Misclassification Rate for Class Prediction
cgcv

Estimate Misclassification Rate Using d-fold Cross-Validation for Class Prediction
dShao

Shao Holdout Sample Size for Linear Regression Variable Selection
rmix

Random Mixture Classification Example
pollution

Pollution Data from McDonald and Schwing
yhat_lars

Fit LASSO Regression using Mallows Cp and Predict
yh_svm

Support Vector Machine Prediction
prostate

Prostate Cancer Data
regal

Regression EPE for All Implemented Methods
yh_RF

Random Forest Prediction
yhat_RF

Fit Random Forest Regression Predictor
yh_NB

Naive Bayes Prediction
fires

Forest Fires in Montesinho Natural Park
SinghTrain

Singh Prostate Microarray Training Data
yhat_plus

SCAD or MCP Regression Prediction
yhat_lm

Linear Predictor using Least-Squares Regression
yhat_SVM

Support Vector Machine Regression Prediction
yh_C50

C50 Prediction
mape

Mean Absolute Percentage Error
meatspec

Meat Spectrometry to Determine Fat Content
yh_lda

LDA predictions
yhat_nn

Nearest Neighbour Prediction
logloss

log-loss function for multiclass prediction