Learn R Programming

BEDASSLE (version 1.6.1)

Quantifies Effects of Geo/Eco Distance on Genetic Differentiation

Description

Provides functions that allow users to quantify the relative contributions of geographic and ecological distances to empirical patterns of genetic differentiation on a landscape. Specifically, we use a custom Markov chain Monte Carlo (MCMC) algorithm, which is used to estimate the parameters of the inference model, as well as functions for performing MCMC diagnosis and assessing model adequacy.

Copy Link

Version

Install

install.packages('BEDASSLE')

Monthly Downloads

383

Version

1.6.1

License

GPL (>= 2)

Maintainer

Last Published

January 11th, 2024

Functions in BEDASSLE (1.6.1)

plot_all_phi_trace

Plots all the trace plots for the phi parameters for all populations
plot_all_phi_marginals

Plot all the marginals for the phi parameters for all populations
plot_phi_trace

Plots the trace plot for the phi parameter estimated in a single population
plot_phi_marginal

Plots the marginal for the phi parameter estimated in a single population
posterior.predictive.sample

Generates posterior predictive samples
plot_acceptance_rate

Plots the acceptance rate of a parameter across MCMC generations
plot_all_trace

Plots all the trace plots for all parameters
plot_trace

Plot the trace plot for a parameter
plot_posterior_predictive_samples

Plots posterior predictive sampling
calculate.pairwise.Fst

Calculates unbiased pairwise Fst between a pair of populations
BEDASSLE-internal

Internal BEDASSLE Functions
MCMC

Runs the Markov chain Monte Carlo with the standard (Binomial) model
calculate.all.pairwise.Fst

Calculates unbiased pairwise Fst between all sampled populations
MCMC_BB

Runs the Markov chain Monte Carlo with the overdispersion (Beta-Binomial) model
Covariance

The parametric covariance matrix
BEDASSLE-package

Disentangling the contributions of geographic and ecological isolation to genetic differentiation
make.continuing.params

Generates an R object containing the last parameter values of an MCMC run (to be used for a subsequent run)
link.up.posteriors

Links up multiple MCMC output objects
HGDP.bedassle.data

The Eurasian subset of the HGDP dataset used in example BEDASSLE analyses
plot_joint_marginal

Plots the joint marginal for a pair of parameters
plot_all_acceptance_rates

Plots the acceptance rates of all parameters across MCMC generations
mcmc.operators

Operator parameters that control the operation of the MCMC
plot_all_joint_marginals

Plots the joint marginals for all parameter pairs
plot_marginal

Plots the marginal density of a parameter
plot_all_marginals

Plots the marginal densities for all parameters