BiCopPar2TailDep(family, par, par2=0)0 = independence copula 
	        1 = Gaussian copula 
	        2 = Student t copula (t-copula) 
	        3 = Clayton copula 
	        4 = Gumbel copula 
	        5 = Frank copula 
	        6 = Joe copula  
		7 = BB1 copula 
		8 = BB6 copula 
		9 = BB7 copula 
		10 = BB8 copula 
		13 = rotated Clayton copula (180 degrees; ``survival Clayton'') 
		14 = rotated Gumbel copula (180 degrees; ``survival Gumbel'') 
		16 = rotated Joe copula (180 degrees; ``survival Joe'')  
		17 = rotated BB1 copula (180 degrees; ``survival BB1'')
		18 = rotated BB6 copula (180 degrees; ``survival BB6'')
		19 = rotated BB7 copula (180 degrees; ``survival BB7'')
		20 = rotated BB8 copula (180 degrees; ``survival BB8'')
		23 = rotated Clayton copula (90 degrees) 
		24 = rotated Gumbel copula (90 degrees) 
		26 = rotated Joe copula (90 degrees) 
		27 = rotated BB1 copula (90 degrees) 
		28 = rotated BB6 copula (90 degrees) 
		29 = rotated BB7 copula (90 degrees) 
		30 = rotated BB8 copula (90 degrees) 
		33 = rotated Clayton copula (270 degrees) 
		34 = rotated Gumbel copula (270 degrees) 
		36 = rotated Joe copula (270 degrees) 
		37 = rotated BB1 copula (270 degrees) 
		38 = rotated BB6 copula (270 degrees) 
		39 = rotated BB7 copula (270 degrees) 
		40 = rotated BB8 copula (270 degrees) 
		par2 = 0).| No. | Lower tail dependence | 
| Upper tail dependence | 
1  | 
| - | - | 
2  | 
$2t_{\nu+1}(-\sqrt{\nu+1}\sqrt{(1-\theta)/(1+\theta)})$ | 
| $2t_{\nu+1}(-\sqrt{\nu+1}\sqrt{(1-\theta)/(1+\theta)})$ | 
3  | 
| $2^{-1/\theta}$ | - | 
4  | 
- | 
| $2-2^{1/\theta}$ | 
5  | 
| - | - | 
6  | 
- | 
| $2-2^{1/\theta}$ | 
7  | 
| $2^{-1/(\theta\delta)}$ | $2-2^{1/\delta}$ | 
8  | 
- | 
| $2-2^{1/(\theta\delta)}$ | 
9  | 
| $2^{-1/\delta}$ | $2-2^{1/\theta}$ | 
10  | 
- | 
| $2-2^{1/\theta}$ if $\delta=1$ otherwise 0 | 
13  | 
| - | $2^{-1/\theta}$ | 
14  | 
$2-2^{1/\theta}$ | 
| - | 
16  | 
| $2-2^{1/\theta}$ | - | 
17  | 
$2-2^{1/\delta}$ | 
| $2^{-1/(\theta\delta)}$ | 
18  | 
| $2-2^{1/(\theta\delta)}$ | - | 
19  | 
$2-2^{1/\theta}$ | 
| $2^{-1/\delta}$ | 
20  | 
| $2-2^{1/\theta}$ if $\delta=1$ otherwise 0 | - | 
23, 33  | 
- | 
| - | 
24, 34  | 
| - | - | 
26, 36  | 
- | 
| - | 
27, 37  | 
| - | - | 
28, 38  | 
- | 
| - | 
29, 39  | 
| - | - | 
30, 40  | 
- | 
| - | No. | 
BiCopPar2Tau## Example 1: Gaussian copula
BiCopPar2TailDep(1,0.7)
## Example 2: t copula
BiCopPar2TailDep(2,0.7,4)
Run the code above in your browser using DataLab