Learn R Programming

COUNT (version 1.3.2)

lbwgrp: lbwgrp

Description

grouped format of the lbw data. The observation level data come to us form Hosmer and Lemeshow (2000). Grouping is such that lowbw is the numerator, and cases the denominator of a binomial model, or cases may be an offset to the count variable, lowbw. Birthweights under 2500g classifies a low birthweight baby.

Usage

data(lbwgrp)

Arguments

Format

A data frame with 6 observations on the following 7 variables.
lowbw
Number of low weight babies per covariate pattern: 12-60
cases
Number of observations with same covariate pattern: 30-165
smoke
1=history of mother smoking; 0=mother nonsmoker
race1
(1/0): Caucasian
race2
(1/0): Black
race3
(1/0): Other
low
low birth weight (not valid variable in grouped format)

Source

Hosmer, D and S. Lemeshow (2000), Applied Logistic Regression, Wiley

Details

lbwgrp is saved as a data frame. Count models: count response=lowbt; offset=log(cases); Binary: binomial numerator= lowbt; binomial denominator=cases

References

Hilbe, Joseph M (2007, 2011), Negative Binomial Regression, Cambridge University Press Hilbe, Joseph M (2009), Logistic Regression Models, Chapman & Hall/CRC

Examples

Run this code
data(lbwgrp)
glmgp <- glm(lowbw ~ smoke + race2 + race3 + offset(log(cases)), family=poisson, data=lbwgrp)
summary(glmgp)
exp(coef(glmgp))
library(MASS)
glmgnb <- glm.nb(lowbw ~  smoke + race2 + race3, data=lbwgrp)
summary(glmgnb)
exp(coef(glmgnb))

Run the code above in your browser using DataLab