Learn R Programming

⚠️There's a newer version (1.3.4) of this package.Take me there.

COUNT (version 1.3.2)

Functions, data and code for count data.

Description

Functions, data and code for Hilbe, J.M. 2011. Negative Binomial Regression, 2-nd Edition (Cambridge University Press) and Hilbe, J.M. 2014. Modeling Count Data (Cambridge University Press).

Copy Link

Version

Install

install.packages('COUNT')

Monthly Downloads

839

Version

1.3.2

License

GPL-2

Maintainer

Andrew Robinson Joseph M Hilbe hilbeasuedu

Last Published

August 15th, 2014

Functions in COUNT (1.3.2)

titanic

titanic
ml.pois

NB2: maximum likelihood Poisson regression
medpar

medpar
probit_syn

Probit regression : generic synthetic binary/binomial probit data and model
rwm

rwm
titanicgrp

titanicgrp
ml.nb2

NB2: maximum likelihood linear negative binomial regression
lbw

lbw
rwm1984

rwm1984
poisson_syn

Poisson : generic synthetic Poisson data and model
fasttrakg

fasttrakg
badhealth

badhealth
mdvis

mdvis
modelfit

Fit Statistics for generalized linear models
nuts

nuts
myTable

Frequency table
nb2.obs.pred

Table of negative binomial counts: observed vs predicted proportions and difference
nb2_syn

Negative binomial (NB2): generic synthetic negative binomial data and model
azcabgptca

azcabgptca
poi.obs.pred

Table of Poisson counts: observed vs predicted proportions and difference
nb1_syn

Negative binomial (NB1): generic synthetic linear negative binomial data and model
azprocedure

azprocedure
fishing

fishing
ml.nb1

NB1: maximum likelihood linear negative binomial regression
nbc_syn

Negative binomial (NB-C): generic synthetic canonical negative binomial data and model
loomis

loomis
azpro

azpro
ships

ships
logit_syn

Logistic regression : generic synthetic binary/binomial logistic data and model
azdrg112

azdrg112
rwm5yr

rwm5yr
ml.nbc

NBC: maximum likelihood linear negative binomial regression
affairs

affairs
smoking

smoking
lbwgrp

lbwgrp