Learn R Programming

COUNT (version 1.3.2)

modelfit: Fit Statistics for generalized linear models

Description

modelfit is used following a glm() or glm.nb() model to produce a list of model fit statistics.

Usage

modelfit(x)

Arguments

x
the only argument is the name of the fitted glm or glm.nb function model

Value

  • obsnumber of model observatiions
  • aicAIC statistic
  • xvarsnumber of model predictors
  • rdofresidial degrees of freedom
  • aic_nAIC, 'aic'/'obs'
  • lllog-likelihood
  • bic_rBIC - Raftery parameterization
  • bic_lBIC - log-likelihood Standard definition (Stata)
  • bic_qhHannan-Quinn IC statistic (Limdep)

Details

modelfit is to be used as a post-estimation function, following the use of glm() or glm.nb().

References

Hilbe, J.M. (2011), Negative Binomial Regression, second edition, Cambridge University Press.

Hilbe, J.M. (2009), Logistic Regression Models, Chapman Hall/CRC

See Also

glm, glm.nb

Examples

Run this code
## Hilbe (2011), Table 9.17
library(MASS)
data(lbwgrp)
nb9_3 <- glm.nb(lowbw ~ smoke + race2 + race3 + offset(log(cases)), data=lbwgrp)
summary(nb9_3)
exp(coef(nb9_3))
modelfit(nb9_3)

Run the code above in your browser using DataLab