Learn R Programming

CopulaRegression (version 0.1-5)

dpolicy_loss: Density of the policy loss

Description

Density of the policy loss

Usage

dpolicy_loss(l, mu, delta, lambda, theta, family, y.max = 300,zt=TRUE)

Arguments

l
vector at which the density is evaluated
mu
expectation of the Gamma distribution
delta
dispersion parameter of the Gamma distribution
lambda
parameter of the (zero-truncated) Poisson distribution
theta
copula parameter
family
an integer defining the bivariate copula family: 1 = Gauss, 3 = Clayton, 4=Gumbel, 5=Frank
y.max
upper value of the finite sum that we use to approximate the infinite sum, see below for details
zt
logical. If zt=TRUE, we use a zero-truncated Poisson variable. Otherwise, we use a Poisson variable. Default is TRUE.

Value

Details

For a Gamma distributed variable X and a (zero truncated) Possion variable Y, the policy loss is defined as $L=X\cdot Y$. Its density is an infinite sum of weighted Gamma densities. The parameter y.max is the upper value of the finite sum that approximates the infinite sum.

References

N. Kraemer, E. Brechmann, D. Silvestrini, C. Czado (2013): Total loss estimation using copula-based regression models. Insurance: Mathematics and Economics 53 (3), 829 - 839.

See Also

epolicy_loss, qpolicy_loss

Examples

Run this code
# example taken from the paper
library(VineCopula)
mu<-1000
delta<-0.09
lambda<-2.5
family<-1
theta<-BiCopTau2Par(tau=0.5,family=family)
l<-seq(1,7000,length=100)
out<-dpolicy_loss(l,mu,delta,lambda,theta,family)
plot(l,out,type="l",lwd=3,xlab="loss",ylab="density")


Run the code above in your browser using DataLab