Learn R Programming


title: "Photometric Redshift with CosmoPhotoz" authors: Rafael S. de Souza, Jonny Elliot, Alberto Krone-Martins, Émille Ishida, Joseph Hilbe output: html_document runtime: shiny

This is a short tutorial explaining how to perform photometric redshift estimation using the CosmoPhotoz R package.

Required libraries

require(CosmoPhotoz)
require(ggplot2)

Load the PHAT0 data included in the package. Here we are using 5% of all dataset for training.

data(PHAT0train)

data(PHAT0test)
PC_comb<-computeCombPCA(subset(PHAT0train,select=c(-redshift)),
                       subset(PHAT0test,select=c(-redshift)))

Number of variance explained by each PC

PC_comb$PCsum

Add the redshift column to the PCA projections of the Training sample

Trainpc<-cbind(PC_comb$x,redshift=PHAT0train$redshift)

Store the PCA projections for the testing sample in the vector Testpc

Testpc<-PC_comb$y

Train the glm model using Gamma Family. 6 PCs explain 99.5% of data variance. In order to account for small variations in the shape, we include a polynomial term for the 2 first PCs (95% of data variance)


Fit<-glmTrainPhotoZ(Trainpc,formula=redshift~poly(Comp.1,2)*poly(Comp.2,2)*Comp.3*Comp.4*Comp.5*Comp.6,method="Bayesian",family="gamma")

Once we fit our GLM model, we can predict the redshift for the "photometric" sample


photoz<-predict(Fit$glmfit,newdata = Testpc,type="response")

Store the redshift from the testing sample in the vector specz for comparison

specz<-PHAT0test$redshift

Compute basic diagnostic statistics

computeDiagPhotoZ(photoz, specz)

Create basic diagnostic plots

Kernel density distribution of the full scatter $(specz-photoz)/(1+specz)$

plotDiagPhotoZ(photoz, specz, type = "errordist")

Predicted vs Actuall values Select 15,000 points to show

datashow<-sample(length(photoz),15000)
plotDiagPhotoZ(photoz[datashow], specz[datashow], type = "predobs")+coord_cartesian(xlim =c(0,1.5), ylim = c(0,1.5))

Scatter distribution as a function of redshift, violin plot

plotDiagPhotoZ(photoz, specz, type = "errorviolins")

Scatter distribution as a function of redshift, box plot

plotDiagPhotoZ(photoz, specz, type = "box")
shinyAppDir("paste(find.package("CosmoPhotoz"),"/glmPhotoZ-2/",sep=""))

Copy Link

Version

Install

install.packages('CosmoPhotoz')

Monthly Downloads

22

Version

0.1

License

GPL (>= 3)

Maintainer

Last Published

August 24th, 2014

Functions in CosmoPhotoz (0.1)

PHAT0train

PHAT0 train dataset
glmPredictPhotoZ

Predict photometric redshifts using a given glm fit object
computeCombPCA

Combined PCA for training and test sample
plotDiagPhotoZ

Plot diagnostics for photometric redshift estimations
CosmoPhotoZestimator

Photometric redshift estimation from a training dataset and a test dataset
glmTrainPhotoZ

Fit a glm for photometric redshift estimation
PHAT0test

PHAT0 test dataset
CosmoPhotoz-package

Photometric redshift estimation based on generalized linear models
computeDiagPhotoZ

Simple diagnostics for the photometric redshift results