DEGexp2(geneExpFile1, geneCol1=1, expCol1=2, depth1=rep(0, length(expCol1)), groupLabel1="group1",
geneExpFile2, geneCol2=1, expCol2=2, depth2=rep(0, length(expCol2)), groupLabel2="group2",
header=TRUE, sep="", method=c("LRT", "CTR", "FET", "MARS", "MATR", "FC"),
pValue=1e-3, zScore=4, qValue=1e-3, foldChange=4,
thresholdKind=1, outputDir="none", normalMethod=c("none", "loess", "median"),
replicate1="none", geneColR1=1, expColR1=2, depthR1=rep(0, length(expColR1)), replicateLabel1="replicate1",
replicate2="none", geneColR2=1, expColR2=2, depthR2=rep(0, length(expColR2)), replicateLabel2="replicate2", rawCount=TRUE)
method="CTR"
).method="CTR"
).?read.table
.?read.table
."LRT"
: Likelihood Ratio Test (Marioni et al. 2008),"CTR"
: Check whether the variation between Technical Replicates
can be explained by the random sampling model (Wang et al. 2009),"FET"
: Fisher's Exact Test (Joshua et al. 2009),"MARS"
: MA-plot-based method with Random Sampling model (Wang et al. 2009),"MATR"
: MA-plot-based method with Technical Replicates (Wang et al. 2009),"FC"
: Fold-Change threshold on MA-plot.LRT, FET, MARS, MATR
).
only used when thresholdKind=1
.MARS, MATR
).
only used when thresholdKind=2
.LRT, FET, MARS, MATR
).
only used when thresholdKind=3
or thresholdKind=4
.1
: pValue threshold,2
: zScore threshold,3
: qValue threshold (Benjamini et al. 1995),4
: qValue threshold (Storey et al. 2003),5
: qValue threshold (Storey et al. 2003) and Fold-Change threshold on MA-plot are both required (can be used only whenmethod="MARS"
).FC
)."none", "loess", "median"
(Yang et al. 2002).
recommend: "none"
.method="MATR"
).
Note: replicate1 and replicate2 are two (groups of) technical replicates of a sample.method="MATR"
).method="MATR"
).method="MATR"
).method="MATR"
).method="MATR"
).
Note: replicate1 and replicate2 are two (groups of) technical replicates of a sample.method="MATR"
).method="MATR"
).method="MATR"
).method="MATR"
).Bloom,J.S. et al. (2009) Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays. BMC Genomics, 10, 221.
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517. Storey,J.D. and Tibshirani,R. (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. 100, 9440-9445.
Wang,L.K. and et al. (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics 26, 136 - 138. Yang,Y.H. et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30, e15.
DEGexp
,
DEGseq
,
getGeneExp
,
readGeneExp
,
GeneExpExample1000
,
GeneExpExample5000
.## kidney: R1L1Kidney, R1L3Kidney, R1L7Kidney, R2L2Kidney, R2L6Kidney
## liver: R1L2Liver, R1L4Liver, R1L6Liver, R1L8Liver, R2L3Liver
geneExpFile <- system.file("extdata", "GeneExpExample5000.txt", package="DEGseq")
outputDir <- file.path(tempdir(), "DEGexpExample")
exp <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(7,9,12,15,18))
exp[30:35,]
exp <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(8,10,11,13,16))
exp[30:35,]
DEGexp2(geneExpFile1=geneExpFile, geneCol1=1, expCol1=c(7,9,12,15,18), groupLabel1="kidney",
geneExpFile2=geneExpFile, geneCol2=1, expCol2=c(8,10,11,13,16), groupLabel2="liver",
method="MARS", outputDir=outputDir)
cat("outputDir:", outputDir, "")
Run the code above in your browser using DataLab