Learn R Programming

DIRECT (version 1.1.0)

Bayesian Clustering of Multivariate Data Under the Dirichlet-Process Prior

Description

A Bayesian clustering method for replicated time series or replicated measurements from multiple experimental conditions, e.g., time-course gene expression data. It estimates the number of clusters directly from the data using a Dirichlet-process prior. See Fu, A. Q., Russell, S., Bray, S. and Tavare, S. (2013) Bayesian clustering of replicated time-course gene expression data with weak signals. The Annals of Applied Statistics. 7(3) 1334-1361. .

Copy Link

Version

Install

install.packages('DIRECT')

Monthly Downloads

248

Version

1.1.0

License

GPL (>= 2)

Maintainer

Audrey Q Fu

Last Published

September 7th, 2023

Functions in DIRECT (1.1.0)

tc.data

Time-Course Microarray Gene Expression Data
simuDataREM

Data Simulation Under the Random-Effects Mixture Model
summaryDIRECT

Processing Posterior Estimates for Clustering Under DIRECT
relabel

A Relabel Algorithm
resampleClusterProb

Resampling to Estimate Posterior Allocation Probability Matrix
plotClustersPCA

PCA Plot for Posterior Allocation Probability Matrix
outputData

Writing Simulation Parameters and Data to Files
DIRECT-package

Bayesian Clustering of Multivariate Data with the Dirichlet-Process Prior
plotClustersSD

Plotting Posterior Estimates of Cluster-Specific Random Effects
MVNorm

The Multivariate Normal Distribution
plotSimulation

Plotting Data Simulated Under A Random-Effects Mixture Model
DPMCMC

Dirichlet Process-Based Markov Chain Monte Carlo (MCMC) Sampler for Mixture Model-Based Clustering
plotClustersMean

Plotting Clustered Mean Vectors
Dirichlet

The Dirichlet Distribution
DIRECT

Bayesian Clustering with the Dirichlet-Process Prior