powered by
Density and random generation for Multivariate Skew Normal distributions with mean vector mean, covariance matrix cov, and skew parameter vector del.
mean
cov
del
ddmsn(dat,n, p, mean, cov, del) rdmsn( n, p, mean, cov, del)
An n by p numeric matrix, the dataset
An integer, the number of observations
An integer, the dimension of data
A length of p vector, the mean
A p by p matrix, the covariance
A length of p vector, the skew parameter
ddmsn gives the density values; rdmsn generates the random numbers
ddmsn
rdmsn
rdemmix,ddmvn,ddmvt, ddmst,rdmvn,rdmvt, rdmst.
rdemmix
ddmvn
ddmvt
ddmst
rdmvn
rdmvt
rdmst
# NOT RUN { n <- 100 p <- 2 mean <- rep(0,p) cov <- diag(p) del<- c(0,1) set.seed(3214) y <- rdmsn( n,p,mean,cov,del) den <- ddmsn(y,n,p,mean,cov,del) # }
Run the code above in your browser using DataLab