Learn R Programming

FitAR (version 1.94)

FitARz: Subset ARz Model Fitting

Description

The subset ARz model, defined by constraining partial autocorrelations to zero, is fitted using exact MLE. When length(p)=1, an AR(p) is fit by MLE.

Usage

FitARz(z, p, demean = TRUE, MeanMLEQ = FALSE, lag.max = "default")

Arguments

z
time series, vector or ts object
p
p specifies the model. If length(p) is 1, an AR(p) is assumed and if p has length greater than 1, a subset ARz is assumed. For example, to fit a subset model with lags 1 and 4 present set p to c(1,4) or equivalently c(1,0,0,4). To fit a subset model with just lag 4, you must use p=c(0,0,0,4) since p=4 will fit a full AR(4).
demean
TRUE, mean estimated. FALSE, mean is zero.
MeanMLEQ
use exact MLE for mean parameter
lag.max
the residual autocorrelations are tabulated for lags 1, ..., lag.max. Also lag.max is used for the Ljung-Box portmanteau test.

Value

A list with class name "FitAR" and components:
loglikelihood
value of the loglikelihood
phiHat
coefficients in AR(p) -- including 0's
sigsqHat
innovation variance estimate
muHat
estimate of the mean
covHat
covariance matrix of the coefficient estimates
zetaHat
transformed parameters, length(zetaHat) = \# coefficients estimated
RacfMatrix
residual autocorrelations and sd for lags 1, ..., lag.max
LjungBox
table of Ljung-Box portmanteau test statistics
SubsetQ
parameters in AR(p) -- including 0's
res
innovation residuals, same length as z
fits
fitted values, same length as z
pvec
lags used in AR model
demean
TRUE if mean estimated otherwise assumed zero
FitMethod
"MLE" or "LS"
IterationCount
number of iterations in mean mle estimation
convergence
value returned by optim -- should be 0
MLEMeanQ
TRUE if mle for mean algorithm used
ARModel
"ARp" if FitARp used, otherwise "ARz"
tsp
tsp(z)
call
result from match.call() showing how the function was called
ModelTitle
description of model
DataTitle
returns attr(z,"title")
z
time series data input)

Details

The model and its properties are discussed in McLeod and Zhang (2006) and McLeod and Zhang (2008).

References

McLeod, A.I. and Zhang, Y. (2006). Partial Autocorrelation Parameterization for Subset Autoregression. Journal of Time Series Analysis, 27, 599-612.

McLeod, A.I. and Zhang, Y. (2008a). Faster ARMA Maximum Likelihood Estimation, Computational Statistics and Data Analysis, 52-4, 2166-2176. DOI link: http://dx.doi.org/10.1016/j.csda.2007.07.020.

McLeod, A.I. and Zhang, Y. (2008b, Submitted). Improved Subset Autoregression: With R Package. Journal of Statistical Software.

See Also

FitAR, FitARp, GetFitARz, GetFitARpMLE, RacfPlot

Examples

Run this code
#First Example: Fit exact MLE to AR(4) 
set.seed(3323)
phi<-c(2.7607,-3.8106,2.6535,-0.9238)
z<-SimulateGaussianAR(phi,1000)
ans<-FitARz(z,4,MeanMLEQ=TRUE)
ans
coef(ans)

## Not run: #save time building package
# #Second Example: compare with sample mean result
# ans<-FitARz(z,4)
# coef(ans)
# 
# #Third Example: Fit subset ARz 
# z<-log(lynx)
# FitARz(z, c(1,2,4,7,10,11))
# #now obain exact MLE for Mean as well
# FitARz(z, c(1,2,4,7,10,11), MeanMLE=TRUE)
# 
# #Fourth Example: Fit subset ARz
# somePACF<-c(0.5,0,0,0,-0.9)
# someAR<-PacfToAR(somePACF)
# z<-SimulateGaussianAR(someAR,1000)
# ans=FitARz(z, c(1,5),MeanMLEQ=TRUE)
# coef(ans)
# GetFitARz(z,c(1,5))#assuming a known zero mean
# ## End(Not run)

Run the code above in your browser using DataLab