Formally, a fuzzy number \(A\) (Dubois, Prade, 1987) is a fuzzy subset of the real line \(R\) with membership function \(\mu\) given by:
| | \(0\) | if \(x < a1\), | |
| | \(left((x-a1)/(a2-a1))\) | if \(a1 \le x < a2\), | |
| \(\mu(x)\) = | | \(1\) | if \(a2 \le x \le a3\), |
| | \(right((x-a3)/(a4-a3))\) | if \(a3 < x \le a4\), | |
| | \(0\) | if \(a4 < x\), |
where \(a1,a2,a3,a4\in R\), \(a1 \le a2 \le a3 \le a4\), \(left: [0,1]\to[0,1]\) is a nondecreasing function called the left side generator of \(A\), and \(right: [0,1]\to[0,1]\) is a nonincreasing function called the right side generator of \(A\). Note that this is a so-called L-R representation of a fuzzy number.
Alternatively, it may be shown that each fuzzy number \(A\) may be uniquely determined by specifying its \(\alpha\)-cuts, \(A(\alpha)\). We have \(A(0)=[a1,a4]\) and $$A(\alpha)=[a1+(a2-a1)*lower(\alpha), a3+(a4-a3)*upper(\alpha)]$$ for \(0<\alpha\le 1\), where \(lower: [0,1]\to[0,1]\) and \(upper: [0,1]\to[0,1]\) are, respectively, strictly increasing and decreasing functions satisfying \(lower(\alpha)=\inf\{x: \mu(x)\ge\alpha\}\) and \(upper(\alpha)=\sup\{x: \mu(x)\ge\alpha\}\).
a1:Single numeric value specifying the left bound for the support.
a2:Single numeric value specifying the left bound for the core.
a3:Single numeric value specifying the right bound for the core.
a4:Single numeric value specifying the right bound for the support.
lower:A nondecreasing function [0,1]->[0,1] that gives the lower alpha-cut bound.
upper:A nonincreasing function [0,1]->[1,0] that gives the upper alpha-cut bound.
left:A nondecreasing function [0,1]->[0,1] that gives the left side function.
right:A nonincreasing function [0,1]->[1,0] that gives the right side function.
Please note that many algorithms that deal with fuzzy numbers often use \(\alpha\)-cuts rather than side functions.
Note that the FuzzyNumbers package also deals with particular types of fuzzy numbers like trapezoidal, piecewise linear, or ``parametric'' FNs.
Dubois D., Prade H. (1987), Fuzzy numbers: An overview, In: Analysis of Fuzzy Information. Mathematical Logic, vol. I, CRC Press, pp. 3-39.
FuzzyNumber for a convenient constructor, and
as.FuzzyNumber for conversion of objects to this class.
Also, see convertSide for creating side functions generators,
convertAlpha for creating alpha-cut bounds generators,
approxInvert for inverting side functions/alpha-cuts numerically.
Other FuzzyNumber-method:
Arithmetic,
Extract,
FuzzyNumber,
alphaInterval(),
alphacut(),
ambiguity(),
as.FuzzyNumber(),
as.PiecewiseLinearFuzzyNumber(),
as.PowerFuzzyNumber(),
as.TrapezoidalFuzzyNumber(),
as.character(),
core(),
distance(),
evaluate(),
expectedInterval(),
expectedValue(),
integrateAlpha(),
piecewiseLinearApproximation(),
plot(),
show(),
supp(),
trapezoidalApproximation(),
value(),
weightedExpectedValue(),
width()
# NOT RUN {
showClass("FuzzyNumber")
showMethods(classes="FuzzyNumber")
# }
Run the code above in your browser using DataLab