Learn R Programming

FuzzyNumbers (version 0.4-7)

FuzzyNumber-class: S4 class Representing a Fuzzy Number

Description

Formally, a fuzzy number \(A\) (Dubois, Prade, 1987) is a fuzzy subset of the real line \(R\) with membership function \(\mu\) given by:

| \(0\) if \(x < a1\),
| \(left((x-a1)/(a2-a1))\) if \(a1 \le x < a2\),
\(\mu(x)\) = | \(1\) if \(a2 \le x \le a3\),
| \(right((x-a3)/(a4-a3))\) if \(a3 < x \le a4\),
| \(0\) if \(a4 < x\),

where \(a1,a2,a3,a4\in R\), \(a1 \le a2 \le a3 \le a4\), \(left: [0,1]\to[0,1]\) is a nondecreasing function called the left side generator of \(A\), and \(right: [0,1]\to[0,1]\) is a nonincreasing function called the right side generator of \(A\). Note that this is a so-called L-R representation of a fuzzy number.

Alternatively, it may be shown that each fuzzy number \(A\) may be uniquely determined by specifying its \(\alpha\)-cuts, \(A(\alpha)\). We have \(A(0)=[a1,a4]\) and $$A(\alpha)=[a1+(a2-a1)*lower(\alpha), a3+(a4-a3)*upper(\alpha)]$$ for \(0<\alpha\le 1\), where \(lower: [0,1]\to[0,1]\) and \(upper: [0,1]\to[0,1]\) are, respectively, strictly increasing and decreasing functions satisfying \(lower(\alpha)=\inf\{x: \mu(x)\ge\alpha\}\) and \(upper(\alpha)=\sup\{x: \mu(x)\ge\alpha\}\).

Arguments

Slots

a1:

Single numeric value specifying the left bound for the support.

a2:

Single numeric value specifying the left bound for the core.

a3:

Single numeric value specifying the right bound for the core.

a4:

Single numeric value specifying the right bound for the support.

lower:

A nondecreasing function [0,1]->[0,1] that gives the lower alpha-cut bound.

upper:

A nonincreasing function [0,1]->[1,0] that gives the upper alpha-cut bound.

left:

A nondecreasing function [0,1]->[0,1] that gives the left side function.

right:

A nonincreasing function [0,1]->[1,0] that gives the right side function.

Child/sub classes

'>TrapezoidalFuzzyNumber, '>PiecewiseLinearFuzzyNumber, '>PowerFuzzyNumber, and '>DiscontinuousFuzzyNumber

Details

Please note that many algorithms that deal with fuzzy numbers often use \(\alpha\)-cuts rather than side functions.

Note that the FuzzyNumbers package also deals with particular types of fuzzy numbers like trapezoidal, piecewise linear, or ``parametric'' FNs.

References

Dubois D., Prade H. (1987), Fuzzy numbers: An overview, In: Analysis of Fuzzy Information. Mathematical Logic, vol. I, CRC Press, pp. 3-39.

See Also

FuzzyNumber for a convenient constructor, and as.FuzzyNumber for conversion of objects to this class. Also, see convertSide for creating side functions generators, convertAlpha for creating alpha-cut bounds generators, approxInvert for inverting side functions/alpha-cuts numerically.

Other FuzzyNumber-method: Arithmetic, Extract, FuzzyNumber, alphaInterval(), alphacut(), ambiguity(), as.FuzzyNumber(), as.PiecewiseLinearFuzzyNumber(), as.PowerFuzzyNumber(), as.TrapezoidalFuzzyNumber(), as.character(), core(), distance(), evaluate(), expectedInterval(), expectedValue(), integrateAlpha(), piecewiseLinearApproximation(), plot(), show(), supp(), trapezoidalApproximation(), value(), weightedExpectedValue(), width()

Examples

Run this code
# NOT RUN {
showClass("FuzzyNumber")
showMethods(classes="FuzzyNumber")
# }

Run the code above in your browser using DataLab