Learn R Programming

FuzzyNumbers (version 0.4-7)

alphacut: Compute Alpha-Cuts

Description

If \(A\) is a fuzzy number, then its \(\alpha\)-cuts are always in form of intervals. Moreover, the \(\alpha\)-cuts form a nonincreasing chain w.r.t. \(alpha\).

Usage

# S4 method for FuzzyNumber,numeric
alphacut(object, alpha)

Arguments

object

a fuzzy number

alpha

numeric vector with elements in [0,1]

Value

Returns a matrix with two columns (left and right alha cut bounds). if some elements in alpha are not in [0,1], then NA is set.

See Also

Other FuzzyNumber-method: Arithmetic, Extract, FuzzyNumber-class, FuzzyNumber, alphaInterval(), ambiguity(), as.FuzzyNumber(), as.PiecewiseLinearFuzzyNumber(), as.PowerFuzzyNumber(), as.TrapezoidalFuzzyNumber(), as.character(), core(), distance(), evaluate(), expectedInterval(), expectedValue(), integrateAlpha(), piecewiseLinearApproximation(), plot(), show(), supp(), trapezoidalApproximation(), value(), weightedExpectedValue(), width()

Other alpha_cuts: core(), supp()

Examples

Run this code
# NOT RUN {
A <- TrapezoidalFuzzyNumber(1, 2, 3, 4)
alphacut(A, c(-1, 0.4, 0.2))
# }

Run the code above in your browser using DataLab