The ambiguity (Delgado et al, 1998) is a measure of nonspecificity of a fuzzy number.
# S4 method for FuzzyNumber
ambiguity(object, ...)
a fuzzy number
additional arguments passed to alphaInterval
Returns a single numeric value.
The ambiguity is defined as \(amb(A) := \int_0^1 \alpha\left(A_U(\alpha)-A_L(\alpha)\right)\,d\alpha\).
Delgado M., Vila M.A., Voxman W. (1998), On a canonical representation of a fuzzy number, Fuzzy Sets and Systems 93, pp. 125-135.
Other FuzzyNumber-method:
Arithmetic
,
Extract
,
FuzzyNumber-class
,
FuzzyNumber
,
alphaInterval()
,
alphacut()
,
as.FuzzyNumber()
,
as.PiecewiseLinearFuzzyNumber()
,
as.PowerFuzzyNumber()
,
as.TrapezoidalFuzzyNumber()
,
as.character()
,
core()
,
distance()
,
evaluate()
,
expectedInterval()
,
expectedValue()
,
integrateAlpha()
,
piecewiseLinearApproximation()
,
plot()
,
show()
,
supp()
,
trapezoidalApproximation()
,
value()
,
weightedExpectedValue()
,
width()
Other characteristics:
expectedValue()
,
value()
,
weightedExpectedValue()
,
width()