data(flags)
### complete normalization of an arrayCGH object (with spatial gradient):
## Initialize flag$args
flag.list1 <- list(local.spatial=local.spatial.flag,
global.spatial=global.spatial.flag, spot=spot.flag, SNR=SNR.flag,
val.mark=val.mark.flag, unique=unique.flag,
amplicon=amplicon.flag, chromosome=chromosome.flag,
replicate=replicate.flag)
data(spatial)
## Not run: gradient.norm <- norm(gradient, flag.list=flag.list1,
# var="LogRatio", FUN=median, na.rm=TRUE)## End(Not run)
print(gradient.norm$flags) ## spot-level flag summary (computed by flag.summary)
### complete normalization of an arrayCGH object (with local spatial bias):
## Initialize flag$args
flag.list2 <- list(spatial=local.spatial.flag, spot=spot.corr.flag,
ref.snr=ref.snr.flag, dapi.snr=dapi.snr.flag, rep=rep.flag,
unique=unique.flag)
flag.list2$spatial$args <- alist(var="ScaledLogRatio", by.var=NULL,
nk=5, prop=0.25, thr=0.15, beta=1, family="symmetric")
flag.list2$spot$args <- alist(var="SpotFlag")
flag.list2$spot$char <- "O"
flag.list2$spot$label <- "Image analysis"
## Not run: edge.norm <- norm(edge, flag.list=flag.list2,
# var="LogRatio", FUN=median, na.rm=TRUE)## End(Not run)
print(edge.norm$flags) ## spot-level flag summary (computed by flag.summary)
Run the code above in your browser using DataLab