## Not run:
# ## Uses the example from Brandt and Freeman 2006. Will not run unless
# ## you have their data from the Politcal
# ## Analysis website!
# library(MSBVAR)
#
# # Read the data and set up as a time series
# data <- read.dta("levant.weekly.79-03.dta")
# attach(data)
#
# # Set up KEDS data
# KEDS.data <- ts(cbind(a2i,a2p,i2a,p2a,i2p,p2i),
# start=c(1979,15),
# freq=52,
# names=c("A2I","A2P","I2A","P2A","I2P","P2I"))
#
# # Select the sample we want to use.
# KEDS <- window(KEDS.data, end=c(1988,50))
#
#
# #############################
# # Estimate the BVAR models
# #############################
#
# # Fit a flat prior model
# KEDS.BVAR.flat <- szbvar(KEDS, p=6, z=NULL, lambda0=1,
# lambda1=1, lambda3=1, lambda4=1, lambda5=0,
# mu5=0, mu6=0, nu=0, qm=4, prior=2,
# posterior.fit=F)
#
# # Reference prior model -- Normal-IW prior pdf
# KEDS.BVAR.informed <- szbvar(KEDS, p=6, z=NULL, lambda0=0.6,
# lambda1=0.1, lambda3=2, lambda4=0.5,
# lambda5=0, mu5=0, mu6=0,
# nu=ncol(KEDS)+1, qm=4, prior=0,
# posterior.fit=F)
#
# # Set up conditional forecast matrix conditions
# nsteps <- 12
# a2i.condition <- rep(mean(KEDS[,1]) + sqrt(var(KEDS[,1])) , nsteps)
#
# yhat<-matrix(c(a2i.condition,rep(0, nsteps*5)), ncol=6)
#
# # Set the random number seed so we can replicate the results.
# set.seed(11023)
#
# # Conditional forecasts
# conditional.forcs.ref <- hc.forecast(KEDS.BVAR.informed, yhat, nsteps,
# burnin=3000, gibbs=5000, exog=NULL)
#
# conditional.forcs.flat <- hc.forecast(KEDS.BVAR.flat, yhat, nsteps,
# burnin=3000, gibbs=5000, exog=NULL)
#
# # Unconditional forecasts
# unconditional.forcs.ref <-uc.forecast(KEDS.BVAR.informed, nsteps,
# burnin=3000, gibbs=5000)
#
# unconditional.forcs.flat <- uc.forecast(KEDS.BVAR.flat, nsteps,
# burnin=3000, gibbs=5000)
#
# # Set-up and plot the unconditional and conditional forecasts. This
# # code pulls for the forecasts for I2P and P2I and puts them into the
# # appropriate array for the figures we want to generate.
# uc.flat <- NULL
# hc.flat <- NULL
# uc.ref <- NULL
# hc.ref <- NULL
#
# uc.flat$forecast <- unconditional.forcs.flat$forecast[,,5:6]
# hc.flat$forecast <- conditional.forcs.flat$forecast[,,5:6]
# uc.ref$forecast <- unconditional.forcs.ref$forecast[,,5:6]
# hc.ref$forecast <- conditional.forcs.ref$forecast[,,5:6]
#
# par(mfrow=c(2,2), omi=c(0.25,0.5,0.25,0.25))
# plot(uc.flat,hc.flat, probs=c(0.16, 0.84), varnames=c("I2P", "P2I"),
# compare.level=KEDS[nrow(KEDS),5:6], lwd=2)
# plot(hc.ref,hc.flat, probs=c(0.16, 0.84), varnames=c("I2P", "P2I"),
# compare.level=KEDS[nrow(KEDS),5:6], lwd=2)
#
# ## End(Not run)
Run the code above in your browser using DataLab