data(iris) # data set
data = iris[,1:4] # data to be classified
class = iris[,5] # data class
prior = c(1,1,1)/3 # a priori probability of the classs
res <- DA(data, class, type = "lda", validation = "learning",
method = "mle", prior = prior, testing = NA)
print("confusion table:"); res$confusion
print("Overall hit ratio:"); 1 - res$error.rate
print("Probability of classes:"); res$prior
print("classification method:"); res$method
print("type of discriminant analysis:"); res$type
print("class names:"); res$class.names
print("Number of classess:"); res$num.class
print("type of validation:"); res$validation
print("Number of correct observations:"); res$num.correct
print("Matrix with comparative classification results:"); res$results
### cross-validation ###
amostra = sample(2, nrow(data), replace = TRUE, prob = c(0.7,0.3))
datatrain = data[amostra == 1,] # training data
datatest = data[amostra == 2,] # test data
dim(datatrain) # training data dimension
dim(datatest) # test data dimension
testing = as.integer(rownames(datatest)) # test data index
res <- DA(data, class, type = "qda", validation = "testing",
method = "moment", prior = NA, testing = testing)
print("confusion table:"); res$confusion
print("Overall hit ratio:"); 1 - res$error.rate
print("Number of correct observations:"); res$num.correct
print("Matrix with comparative classification results:"); res$results
Run the code above in your browser using DataLab