Learn R Programming

⚠️There's a newer version (2.2.7) of this package.Take me there.

MVar (version 2.2.5)

Multivariate Analysis

Description

Multivariate analysis, having functions that perform simple correspondence analysis (CA) and multiple correspondence analysis (MCA), principal components analysis (PCA), canonical correlation analysis (CCA), factorial analysis (FA), multidimensional scaling (MDS), linear (LDA) and quadratic discriminant analysis (QDA), hierarchical and non-hierarchical cluster analysis, simple and multiple linear regression, multiple factor analysis (MFA) for quantitative, qualitative, frequency (MFACT) and mixed data, biplot, scatter plot, projection pursuit (PP), grant tour method and other useful functions for the multivariate analysis.

Copy Link

Version

Install

install.packages('MVar')

Monthly Downloads

512

Version

2.2.5

License

GPL-3

Maintainer

Paulo Cesar Ossani

Last Published

November 22nd, 2024

Functions in MVar (2.2.5)

DataMix

Mixed data set.
LocLab

Function for better position of the labels in the graphs.
FA

Factor Analysis (FA).
MDS

Multidimensional Scaling (MDS).
MVar-package

Multivariate Analysis.
DataQuali

Qualitative data set
DataQuan

Quantitative data set
Plot.FA

Graphs of the Factorial Analysis (FA).
DA

Linear (LDA) and quadratic discriminant analysis (QDA).
MFA

Multiple Factor Analysis (MFA).
Plot.CA

Graphs of the simple (CA) and multiple correspondence analysis (MCA).
PP_Optimizer

Optimization function of the Projection Pursuit index (PP).
Plot.CCA

Graphs of the Canonical Correlation Analysis (CCA).
Plot.Cor

Plot of correlations between variables.
GSVD

Generalized Singular Value Decomposition (GSVD).
NormData

Normalizes the data.
NormTest

Test of normality of the data.
Scatter

Scatter plot.
Plot.MFA

Graphics of the Multiple Factor Analysis (MFA).
GrandTour

Animation technique Grand Tour.
Plot.PCA

Graphs of the Principal Components Analysis (PCA).
Plot.PP

Graphics of the Projection Pursuit (PP).
Cluster

Cluster Analysis.
IM

Indicator matrix.
PCA

Principal Components Analysis (PCA).
Plot.Regr

Graphs of the linear regression results.
PP_Index

Function to find the Projection Pursuit indexes (PP).
Regr

Linear regression.
DataInd

Frequency data set.
Biplot

Biplot graph.
CoefVar

Coefficient of variation of the data.
CCA

Canonical Correlation Analysis(CCA).
CA

Correspondence Analysis (CA).
DataFreq

Frequency data set.
DataCoffee

Frequency data set.