########################################
## aggregation of individual opinions
########################################
mat = matrix(nrow = 4, ncol = 1, data = NA)
mat[,1] = c(system.file('extdata','ind1.tsv',package = 'Prize'),
system.file('extdata','ind2.tsv',package = 'Prize'),
system.file('extdata','ind3.tsv',package = 'Prize'),
system.file('extdata','ind4.tsv',package = 'Prize'))
rownames(mat) = c('ind1','ind2','ind3', 'ind4')
colnames(mat) = c('individual_judgement')
# non-weighted AIJ
res = gaggregate(srcfile = mat, method = 'geometric', simulation = 500)
########################################
## Estimating idealised prioritise
## Rating AHP
########################################
category_pcm = read.delim(system.file('extdata','number.tsv', package = 'Prize')
, sep = '\t', header = TRUE, row.names = 1)
alt_mat = read.delim(system.file('extdata','numEpitope_alternative_category.tsv',
package = 'Prize'), sep = '\t', header = FALSE)
rate = rating(category_pcm, alt_mat, simulation = 500)
########################################
## Prioritization estimation using AHP
########################################
mat <- matrix(nrow = 7, ncol = 3, data = NA)
mat[,1] <- c('0', '1','2','3','4','4.1','4.2')
mat[,2] <- c('Prioritization_of_DE_genes','Tumor_expression','Normal_expression',
'Frequency', 'Epitopes', 'Number_of_epitopes', 'Size_of_epitopes')
mat[,3] <- c(system.file('extdata','aggreg.judgement.tsv',package = 'Prize'),
system.file('extdata','tumor.PCM.tsv',package = 'Prize'),
system.file('extdata','normal.PCM.tsv',package = 'Prize'),
system.file('extdata','freq.PCM.tsv',package = 'Prize'),
system.file('extdata','epitope.PCM.tsv',package = 'Prize'),
system.file('extdata','epitopeNum.PCM.tsv',package = 'Prize'),
system.file('extdata','epitopeLength.PCM.tsv',package = 'Prize'))
# prioritization pipeline
prioritization <- pipeline(mat, model = 'relative', simulation = 500)
########################################
## visualizaion
########################################
# visualizing individal opinion consistency ratio
crplot(ICR(res), angle = 45)
# visualizing the distance among individual opinion and aggregated group judgment
dplot(IP(res))
# visualizing problem hierarchy
ahplot(ahp_plot(prioritization), fontsize = 0.7, cradx = 0.11 ,sradx = 0.12,
cirx= 0.18, ciry = 0.07, dist = 0.06)
# visualizing prioritized alternatives
rainbowplot(rainbow_plot(prioritization)$criteria_rainbowplot, xcex = 3)
rainbowplot(rainbow_plot(prioritization)$subcriteria_rainbowplot, xcex = 3)
# visualizing criteria/subcriteria score
wplot(weight_plot(prioritization)$criteria_wplot, type = 'pie',
fontsize = 7, pcex = 3)
wplot(weight_plot(prioritization)$criteria_wplot, type = 'bar',
fontsize = 7, pcex = 3, xlab = 'Weight', ylab = 'Criteria')
Run the code above in your browser using DataLab