Learn R Programming

Prize (version 1.2.0)

dplot: dplot

Description

Computing and plotting the distance between individuals and group judgement. Distances are computed using classical multidimensional scaling (MDS) approach.

Usage

dplot(srcfile, fontsize = 15, xcex = 10, ycex = 10, lcex = 5, hjust = 0.5, vjust = 1, xlab = "Coordinate 1", ylab = "Coordinate 2", main = NULL)

Arguments

srcfile
a numeric matrix of individual and group priorities.
fontsize
the font size of the plot title, and x and y axis labels. The default value is 15.
xcex,ycex
the font size of the x and y axis, respectively. The default values is 10.
lcex
the font size of point labels in dplot
hjust,vjust
the horizontal and vertical justification of point labels, respectively.
xlab,ylab
the label of the x and y axis, respectively.
main
the plot title

Value

An object created by 'ggplot'.

References

J.C. Gower. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53(3/4):pp. 325-338, 1966.

Examples

Run this code
mat <- matrix(nrow = 5, ncol = 4, data = NA)
rownames(mat) <- c('Ind1','Ind2','Ind3', 'Ind4' ,'Group judgement')
colnames(mat) <- c('Tumor_expression','Normal_expression','Frequency','Epitopes')
mat[1,] <- c(0.4915181, 0.3058879, 0.12487821, 0.07771583)
mat[2,] <- c(0.3060687, 0.4949012, 0.12868606, 0.07034399)
mat[3,] <- c(0.4627138, 0.3271881, 0.13574662, 0.07435149)
mat[4,] <- c(0.6208484, 0.2414021, 0.07368481, 0.06406465)
mat[5,] <- c(0.4697298, 0.3406738, 0.11600194, 0.07359445)

dplot(mat, xlab = 'Coordinate 1', ylab = 'Coordinate 2', main = 'Distance plot')

Run the code above in your browser using DataLab