mat <- matrix(nrow = 4, ncol = 1, data = NA)
mat[,1] <- c(system.file('extdata','ind1.tsv',package = 'Prize'),
system.file('extdata','ind2.tsv',package = 'Prize'),
system.file('extdata','ind3.tsv',package = 'Prize'),
system.file('extdata','ind4.tsv',package = 'Prize'))
rownames(mat) <- c('ind1','ind2','ind3', 'ind4')
colnames(mat) <- c('individual_judgement')
# non-weighted aggregation
res <- gaggregate(srcfile = mat, method = 'geometric', simulation = 500)
# weighted aggregation
# Decision makers are assigned with a priority value based on their specialization and perspectives.
mat <- cbind(mat, c(0.35,0.25,0.15,0.25))
colnames(mat)[2] <- 'individual_weight'
res <- gaggregate(srcfile = mat, method = 'geometric', simulation = 500)
Run the code above in your browser using DataLab