Learn R Programming

ProNet (version 1.0.0)

topology: Network topology analysis

Description

Calculate the network or graph's topological parameters like degree distribution, clustering coefficient, betweenness, closeness, shortest paths, eigenvector centrality and connectivity.

Usage

topology(graph, simple.parameters = FALSE, degree.distribution = FALSE, power.law = TRUE, fit.line = FALSE, clustering.coefficient = FALSE, betweenness = FALSE, shortest.paths = FALSE, closeness = FALSE, eigenvector.centrality = FALSE, connectivity = FALSE)

Arguments

graph
An igraph object.
simple.parameters
Logical value, indicating whether to do basic statistics (if TRUE) or not (if FALSE).
degree.distribution
Logical value, indicating whether to do degree distribution statistics (if TRUE) or not (if FALSE).
power.law
Logical value, indicating whether the log ratio would be calculated in degree distribution statistics (if TRUE) or not (if FALSE).
fit.line
Logical value, indicating whether to do line fitting in degree distribution statistics (if TRUE) or not (if FALSE).
clustering.coefficient
Logical value, indicating whether to do clustering.coefficient statistics (if TRUE) or not (if FALSE).
betweenness
Logical value, indicating whether to do betweenness statistics (if TRUE) or not (if FALSE).
shortest.paths
Logical value, indicating whether to do shortest.paths statistics (if TRUE) or not (if FALSE).
closeness
Logical value, indicating whether to do closeness statistics (if TRUE) or not (if FALSE).
eigenvector.centrality
Logical value, indicating whether to do eigenvector.centrality statistics (if TRUE) or not (if FALSE).
connectivity
Logical value, indicating whether to do connectivity statistics (if TRUE) or not (if FALSE).

Value

A list of topological parameters and plots.

References

Y Benjamini, Y Hochberg. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), Vol. 57, No. 1. (1995), pp. 289-300.

Examples

Run this code
nlocal<-data.frame(c("DVL1","DVL2","DVL3"))
net<-construction(input=nlocal,db="HPRD",species="human",ID.type="Gene symbol",hierarchy=1)
tp<-topology(net,simple.parameters=TRUE)
tp<-topology(net,degree.distribution=TRUE)
tp<-topology(net,simple.parameters=TRUE,degree.distribution=TRUE)

Run the code above in your browser using DataLab