Learn R Programming

ProjectionBasedClustering (version 1.0.0)

MDS: Classical multidimensional scaling of a data matrix

Description

Classical multidimensional scaling of a data matrix. Also known as principal coordinates analysis

Usage

MDS(DataOrDists,method='euclidean',OutputDimension=2,PlotIt=FALSE,Cls)

Arguments

DataOrDists

array of data: n cases in rows, d variables in columns, matrix is not symmetric or distance matrix, in this case matrix has to be symmetric

method

method specified by distance string: 'euclidean','cityblock=manhatten','cosine','chebychev','jaccard','minkowski','manhattan','binary'

OutputDimension

Number of dimensions in the Outputspace, default=2

PlotIt

Default: FALSE, If TRUE: Plots the projection as a 2d visualization.

Cls

[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data.

Value

ProjectedPoints

[1:n,OutputDimension], n by OutputDimension matrix containing coordinates of the Projectio

Eigenvalues

the eigenvalues of MDSvalues*MDSvalues'

Stress

Shephard-Kruskal Stress