Classical multidimensional scaling of a data matrix. Also known as principal coordinates analysis
MDS(DataOrDists,method='euclidean',OutputDimension=2,PlotIt=FALSE,Cls)
array of data: n cases in rows, d variables in columns, matrix is not symmetric or distance matrix, in this case matrix has to be symmetric
method specified by distance string: 'euclidean','cityblock=manhatten','cosine','chebychev','jaccard','minkowski','manhattan','binary'
Number of dimensions in the Outputspace, default=2
Default: FALSE, If TRUE: Plots the projection as a 2d visualization.
[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data.
[1:n,OutputDimension], n by OutputDimension matrix containing coordinates of the Projectio
the eigenvalues of MDSvalues*MDSvalues'
Shephard-Kruskal Stress