Learn R Programming

RaSEn (version 3.0.0)

Random Subspace Ensemble Classification and Variable Screening

Description

We propose a general ensemble classification framework, RaSE algorithm, for the sparse classification problem. In RaSE algorithm, for each weak learner, some random subspaces are generated and the optimal one is chosen to train the model on the basis of some criterion. To be adapted to the problem, a novel criterion, ratio information criterion (RIC) is put up with based on Kullback-Leibler divergence. Besides minimizing RIC, multiple criteria can be applied, for instance, minimizing extended Bayesian information criterion (eBIC), minimizing training error, minimizing the validation error, minimizing the cross-validation error, minimizing leave-one-out error. There are various choices of base classifier, for instance, linear discriminant analysis, quadratic discriminant analysis, k-nearest neighbour, logistic regression, decision trees, random forest, support vector machines. RaSE algorithm can also be applied to do feature ranking, providing us the importance of each feature based on the selected percentage in multiple subspaces. RaSE framework can be extended to the general prediction framework, including both classification and regression. We can use the selected percentages of variables for variable screening. The latest version added the variable screening function for both regression and classification problems.

Copy Link

Version

Install

install.packages('RaSEn')

Monthly Downloads

216

Version

3.0.0

License

GPL-2

Maintainer

Ye Tian

Last Published

October 16th, 2021

Functions in RaSEn (3.0.0)

RaModel

Generate data \((x, y)\) from various models in two papers.
predict.RaSE

Predict the outcome of new observations based on the estimated RaSE classifier (Tian, Y. and Feng, Y., 2021).
RaScreen

Variable screening via RaSE.
RaRank

Rank the features by selected percentages provided by the output from RaScreen.
rat

Affymetrix rat genome 230 2.0 array data set.
print.RaSE

Print a fitted RaSE object.
predict.super_RaSE

Predict the outcome of new observations based on the estimated super RaSE classifier (Zhu, J. and Feng, Y., 2021).
print.super_RaSE

Print a fitted super_RaSE object.
colon

Colon data set.
Rase

Construct the random subspace ensemble classifier.
RaPlot

Visualize the feature ranking results of a fitted RaSE object.