# NOT RUN {
set.seed(0, kind = "L'Ecuyer-CMRG")
train.data <- RaModel("classification", 1, n = 100, p = 50)
test.data <- RaModel("classification", 1, n = 100, p = 50)
xtrain <- train.data$x
ytrain <- train.data$y
xtest <- test.data$x
ytest <- test.data$y
# test RaSE classifier with LDA base classifier
fit <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, base = 'lda',
cores = 2, criterion = 'ric')
mean(predict(fit, xtest) != ytest)
# }
# NOT RUN {
# test RaSE classifier with LDA base classifier and 1 iteration round
fit <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 1, base = 'lda',
cores = 2, criterion = 'ric')
mean(predict(fit, xtest) != ytest)
# test RaSE classifier with QDA base classifier and 1 iteration round
fit <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 1, base = 'qda',
cores = 2, criterion = 'ric')
mean(predict(fit, xtest) != ytest)
# test RaSE classifier with kNN base classifier
fit <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, base = 'knn',
cores = 2, criterion = 'loo')
mean(predict(fit, xtest) != ytest)
# test RaSE classifier with logistic regression base classifier
fit <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, base = 'logistic',
cores = 2, criterion = 'bic')
mean(predict(fit, xtest) != ytest)
# test RaSE classifier with SVM base classifier
fit <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, base = 'svm',
cores = 2, criterion = 'training')
mean(predict(fit, xtest) != ytest)
# test RaSE classifier with random forest base classifier
fit <- Rase(xtrain, ytrain, B1 = 20, B2 = 10, iteration = 0, base = 'randomforest',
cores = 2, criterion = 'cv', cv = 3)
mean(predict(fit, xtest) != ytest)
# fit a super RaSE classifier by sampling base learner from kNN, LDA and logistic
# regression in equal probability
fit <- Rase(xtrain = xtrain, ytrain = ytrain, B1 = 100, B2 = 100,
base = c("knn", "lda", "logistic"), super = list(type = "separate", base.update = T),
criterion = "cv", cv = 5, iteration = 1, cores = 2)
mean(predict(fit, xtest) != ytest)
# fit a super RaSE classifier by sampling base learner from random forest, LDA and
# SVM with probability 0.2, 0.5 and 0.3
fit <- Rase(xtrain = xtrain, ytrain = ytrain, B1 = 100, B2 = 100,
base = c(randomforest = 0.2, lda = 0.5, svm = 0.3),
super = list(type = "separate", base.update = F),
criterion = "cv", cv = 5, iteration = 0, cores = 2)
mean(predict(fit, xtest) != ytest)
# }
Run the code above in your browser using DataLab