Learn R Programming

Seurat (version 2.0.0)

ICHeatmap: Independent component heatmap

Description

Draws a heatmap focusing on a principal component. Both cells and genes are sorted by their principal component scores. Allows for nice visualization of sources of heterogeneity in the dataset."()

Usage

ICHeatmap(object, ic.use = 1, cells.use = NULL, num.genes = 30,
  disp.min = -2.5, disp.max = 2.5, do.return = FALSE, col.use = pyCols,
  use.scale = TRUE, do.balanced = FALSE, remove.key = FALSE,
  label.columns = NULL, ...)

Arguments

object

Seurat object

ic.use

Independent components to use

cells.use

Cells to include in the heatmap (default is all cells)

num.genes

Number of genes to return

disp.min

Minimum display value (all values below are clipped)

disp.max

Maximum display value (all values above are clipped)

use.scale

Default is TRUE: plot scaled data. If FALSE, plot raw data on the heatmap.

do.balanced

Return an equal number of genes with both + and - IC scores.

remove.key

Removes the color key from the plot.

Value

If do.return==TRUE, a matrix of scaled values which would be passed to heatmap.2. Otherwise, no return value, only a graphical output