Learn R Programming

⚠️There's a newer version (5.0.3) of this package.Take me there.

Seurat v2.0

Seurat is an R toolkit for single cell genomics, developed and maintained by the Satija Lab at NYGC.

Instructions, documentation, and tutorials can be found at:

Seurat is also hosted on GitHub, you can view and clone the repository at

Seurat has been successfully installed on Mac OS X, Linux, and Windows, using the devtools package to install directly from GitHub

Improvements and new features will be added on a regular basis, please contact seuratpackage@gmail.com with any questions or if you would like to contribute

Version History

July 26, 2017

  • Version 2.0
  • Changes:
    • Preprint released for integrated analysis of scRNA-seq across conditions, technologies and species
    • Significant restructuring of code to support clarity and dataset exploration
    • Methods for scoring gene expression and cell-cycle phase

October 4, 2016

  • Version 1.4 released
  • Changes:
    • Improved tools for cluster evaluation/visualizations
    • Methods for combining and adding to datasets

August 22, 2016:

  • Version 1.3 released
  • Changes :
    • Improved clustering approach - see FAQ for details
    • All functions support sparse matrices
    • Methods for removing unwanted sources of variation
    • Consistent function names
    • Updated visualizations

May 21, 2015:

  • Drop-Seq manuscript published. Version 1.2 released
  • Changes :
    • Added support for spectral t-SNE and density clustering
    • New visualizations - including pcHeatmap, dot.plot, and feature.plot
    • Expanded package documentation, reduced import package burden
    • Seurat code is now hosted on GitHub, enables easy install through devtools
    • Small bug fixes

April 13, 2015:

  • Spatial mapping manuscript published. Version 1.1 released (initial release)

Copy Link

Version

Install

install.packages('Seurat')

Monthly Downloads

49,115

Version

2.0.0

License

GPL-3

Maintainer

Last Published

May 10th, 2024

Functions in Seurat (2.0.0)

AssessNodes

Assess Internal Nodes
AssessSplit

Assess Cluster Split
AverageDetectionRate

Probability of detection by identity class
AverageExpression

Averaged gene expression by identity class
AddImputedScore

Calculate imputed expression values
AddMetaData

Add Metadata
AddSmoothedScore

Calculate smoothed expression values
AlignSubspace

Align subspaces using dynamic time warping (DTW)
AddModuleScore

Calculate module scores for gene expression programs in single cells
AddSamples

Add samples into existing Seurat object.
AveragePCA

Average PCA scores by identity class
BuildClusterTree

Phylogenetic Analysis of Identity Classes
DiffExpTest

Likelihood ratio test for zero-inflated data
DiffTTest

Differential expression testing using Student's t-test
ClassifyCells

Classify New Data
ColorTSNESplit

Color tSNE Plot Based on Split
CreateSeuratObject

Initialize and setup the Seurat object
CustomDistance

Run a custom distance function on an input data matrix
CalcVarExpRatio

Calculate the ratio of variance explained by ICA or PCA to CCA
CaseMatch

Match the case of character vectors
CustomPalette

Create a custom color palette
DimTopGenes

Find genes with highest scores for a given dimensional reduction technique
DoHeatmap

Gene expression heatmap
FeaturePlot

Visualize 'features' on a dimensional reduction plot
FetchData

Access cellular data
BuildRFClassifier

Build Random Forest Classifier
BuildSNN

SNN Graph Construction
DMEmbed

Diffusion Maps Cell Embeddings Accessor Function
DMLoad

Diffusion Maps Gene Loading Accessor Function
GenesInCluster

GenesInCluster
GetAssayData

Accessor function for multimodal data
ICAPlot

Plot ICA map
ICHeatmap

Independent component heatmap
CellCycleScoring

Score cell cycle phases
CellPlot

Cell-cell scatter plot
DMPlot

Plot Diffusion map
DarkTheme

Dark Theme
DimElbowPlot

Quickly Pick Relevant Dimensions
DimHeatmap

Dimensional reduction heatmap
FilterCells

Return a subset of the Seurat object
FindAllMarkers

Gene expression markers for all identity classes
DimPlot

Dimensional reduction plot
DimTopCells

Find cells with highest scores for a given dimensional reduction technique
ExpSD

Calculate the standard deviation of logged values
ExpVar

Calculate the variance of logged values
FindAllMarkersNode

Find all markers for a node
FindClusters

Cluster Determination
GetCellEmbeddings

Dimensional Reduction Cell Embeddings Accessor Function
GetCentroids

Get cell centroids
FitGeneK

Build mixture models of gene expression
GenePlot

Scatter plot of single cell data
GetClusters

Get Cluster Assignments
GetDimReduction

Dimensional Reduction Accessor Function
JackStrawPlot

JackStraw Plot
JoyPlot

Single cell joy plot
MakeSparse

Make object sparse
MarkerTest

ROC-based marker discovery
InitialMapping

Infer spatial origins for single cells
JackStraw

Determine statistical significance of PCA scores.
NegBinomDETest

Negative binomial test for UMI-count based data
NegBinomRegDETest

Negative binomial test for UMI-count based data (regularized version)
PCElbowPlot

Quickly Pick Relevant PCs
PCHeatmap

Principal component heatmap
PlotClusterTree

Plot phylogenetic tree
LogNormalize

Normalize raw data
LogVMR

Calculate the variance to mean ratio of logged values
MergeSeurat

Merge Seurat Objects
MinMax

Apply a ceiling and floor to all values in a matrix
DBClustDimension

Perform spectral density clustering on single cells
DotPlotOld

Old Dot plot visualization (pre-ggplot implementation) Intuitive way of visualizing how gene expression changes across different identity classes (clusters). The size of the dot encodes the percentage of cells within a class, while the color encodes the AverageExpression level of 'expressing' cells (green is high).
ExpMean

Calculate the mean of logged values
ExtractField

Extract delimiter information from a string.
PCAEmbed

PCA Cell Embeddings Accessor Function
PCALoad

PCA Gene Loadings Accessor Function
PrintCalcParams

Print the calculation
PrintCalcVarExpRatioParams

Print Parameters Associated with CalcVarExpRatio
NumberClusters

Convert the cluster labels to a numeric representation
OldDoHeatmap

Gene expression heatmap
PrintDMParams

Print Diffusion Map Calculation Parameters
FastWhichCells

FastWhichCells Identify cells matching certain criteria (limited to character values)
FindMarkersNode

Gene expression markers of identity classes defined by a phylogenetic clade
FindVariableGenes

Identify variable genes
ICAEmbed

ICA Cell Embeddings Accessor Function
PoissonDETest

Poisson test for UMI-count based data
PrintICAParams

Print ICA Calculation Parameters
PrintPCA

Print the results of a PCA analysis
RunDiffusion

Run diffusion map
PrintDim

Print the results of a dimensional reduction analysis
ProjectPCA

Project Principal Components Analysis onto full dataset
Read10X

Load in data from 10X
RemoveFromTable

Remove data from a table
RenameIdent

Rename one identity class to another
PrintPCAParams

Print PCA Calculation Parameters
PrintSNNParams

Print SNN Construction Calculation Parameters
ReorderIdent

Reorder identity classes
RunCCA

Perform Canonical Correlation Analysis
ScaleData

Scale and center the data.
ScaleDataR

Old R based implementation of ScaleData. Scales and centers the data
UpdateSeuratObject

Update old Seurat object to accomodate new features
ValidateClusters

Cluster Validation
VlnPlot

Single cell violin plot
RunICA

Run Independent Component Analysis on gene expression
SetIdent

Set identity class information
Seurat-deprecated

Deprecated function(s) in the Seurat package
StashIdent

Set identity class information
DoKMeans

K-Means Clustering
DotPlot

Dot plot visualization
FeatureHeatmap

Vizualization of multiple features
FeatureLocator

Feature Locator
SubsetColumn

Return a subset of columns for a matrix or data frame
VizICA

Visualize ICA genes
VizPCA

Visualize PCA genes
SetClusters

Set Cluster Assignments
SetDimReduction

Dimensional Reduction Mutator Function
ValidateSpecificClusters

Specific Cluster Validation
VariableGenePlot

View variable genes
seurat

The Seurat Class
situ3d

Draw 3D in situ predictions from Zebrafish dataset
ICALoad

ICA Gene Loadings Accessor Function
ICTopCells

Find cells with highest ICA scores
ICTopGenes

Find genes with highest ICA scores
NodeHeatmap

Node Heatmap
FindConservedMarkers

Finds markers that are conserved between the two groups
FindMarkers

Gene expression markers of identity classes
GetGeneLoadings

Dimensional Reduction Gene Loadings Accessor Function
WhichCells

Identify cells matching certain criteria
NormalizeData

Normalize Assay Data
PCTopCells

Find cells with highest PCA scores
PCTopGenes

Find genes with highest PCA scores
PrintFindClustersParams

Print FindClusters Calculation Parameters
PrintICA

Print the results of a PCA analysis
RefinedMapping

Quantitative refinement of spatial inferences
RegressOutResid

Regress out technical effects and cell cycle
RunPCA

Run Principal Component Analysis on gene expression using IRLBA
RunTSNE

Run t-distributed Stochastic Neighbor Embedding
SetAllIdent

Switch identity class definition to another variable
SetAssayData

Assay Data Mutator Function
TSNEPlot

Plot tSNE map
TobitTest

Differential expression testing using Tobit models
VizClassification

Highlight classification results
VizDimReduction

Visualize Dimensional Reduction genes
HoverLocator

Hover Locator
KMeansHeatmap

Plot k-means clusters
MatrixRowShuffle

Independently shuffle values within each row of a matrix
MergeNode

Merge childen of a node
PCAPlot

Plot PCA map
KClustDimension

Perform spectral k-means clustering on single cells
PCASigGenes

Significant genes from a PCA
PrintAlignSubspaceParams

Print AlignSubspace Calculation Parameters
PrintCCAParams

Print CCA Calculation Parameters
PrintTSNEParams

Print TSNE Calculation Parameters
ProjectDim

Project Dimensional reduction onto full dataset
SampleUMI

Sample UMI
SaveClusters

Save cluster assignments to a TSV file
Shuffle

Shuffle a vector
SplitDotPlotGG

Split Dot plot visualization
SubsetData

Return a subset of the Seurat object
SubsetRow

Return a subset of rows for a matrix or data frame