Learn R Programming

Seurat (version 2.1.0)

DoKMeans: K-Means Clustering

Description

Perform k=means clustering on both genes and single cells

Usage

DoKMeans(object, genes.use = NULL, k.genes = NULL, k.cells = 0,
  k.seed = 1, do.plot = FALSE, data.cut = 2.5,
  k.cols = PurpleAndYellow(), set.ident = TRUE, do.constrained = FALSE,
  assay.type = "RNA", ...)

Arguments

object

Seurat object

genes.use

Genes to use for clustering

k.genes

K value to use for clustering genes

k.cells

K value to use for clustering cells (default is NULL, cells are not clustered)

k.seed

Random seed

do.plot

Draw heatmap of clustered genes/cells (default is FALSE).

data.cut

Clip all z-scores to have an absolute value below this. Reduces the effect of huge outliers in the data.

k.cols

Color palette for heatmap

set.ident

If clustering cells (so k.cells>0), set the cell identity class to its K-means cluster (default is TRUE)

do.constrained

FALSE by default. If TRUE, use the constrained K-means function implemented in the tclust package.

assay.type

Type of data to normalize for (default is RNA), but can be changed for multimodal analyses.

Additional parameters passed to kmeans (or tkmeans)

Value

Seurat object where the k-means results for genes is stored in object@kmeans.obj[[1]], and the k-means results for cells is stored in object@kmeans.col[[1]]. The cluster for each cell is stored in object@meta.data[,"kmeans.ident"] and also object@ident (if set.ident=TRUE)

Details

K-means and heatmap are calculated on object@scale.data

Examples

Run this code
# NOT RUN {
pbmc_small
# Cluster on genes only
pbmc_small <- DoKMeans(pbmc_small, k.genes = 3)
# Cluster on genes and cell
pbmc_small <- DoKMeans(pbmc_small, k.genes = 3, k.cells = 3)

# }

Run the code above in your browser using DataLab