Learn R Programming

⚠️There's a newer version (5.0.3) of this package.Take me there.

Seurat v2.1

Seurat is an R toolkit for single cell genomics, developed and maintained by the Satija Lab at NYGC.

Instructions, documentation, and tutorials can be found at:

Seurat is also hosted on GitHub, you can view and clone the repository at

Seurat has been successfully installed on Mac OS X, Linux, and Windows, using the devtools package to install directly from GitHub

Improvements and new features will be added on a regular basis, please contact seuratpackage@gmail.com with any questions or if you would like to contribute

Version History October 12, 2017

  • Version 2.1
  • Changes:
    • Support for using MAST and DESeq2 packages for differential expression testing in FindMarkers
    • Support for multi-modal single-cell data via @assay slot

July 26, 2017

  • Version 2.0
  • Changes:
    • Preprint released for integrated analysis of scRNA-seq across conditions, technologies and species
    • Significant restructuring of code to support clarity and dataset exploration
    • Methods for scoring gene expression and cell-cycle phase

October 4, 2016

  • Version 1.4 released
  • Changes:
    • Improved tools for cluster evaluation/visualizations
    • Methods for combining and adding to datasets

August 22, 2016:

  • Version 1.3 released
  • Changes :
    • Improved clustering approach - see FAQ for details
    • All functions support sparse matrices
    • Methods for removing unwanted sources of variation
    • Consistent function names
    • Updated visualizations

May 21, 2015:

  • Drop-Seq manuscript published. Version 1.2 released
  • Changes :
    • Added support for spectral t-SNE and density clustering
    • New visualizations - including pcHeatmap, dot.plot, and feature.plot
    • Expanded package documentation, reduced import package burden
    • Seurat code is now hosted on GitHub, enables easy install through devtools
    • Small bug fixes

April 13, 2015:

  • Spatial mapping manuscript published. Version 1.1 released (initial release)

Copy Link

Version

Install

install.packages('Seurat')

Monthly Downloads

49,115

Version

2.1.0

License

GPL-3 | file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

May 10th, 2024

Functions in Seurat (2.1.0)

AddSmoothedScore

Calculate smoothed expression values
AlignSubspace

Align subspaces using dynamic time warping (DTW)
AverageDetectionRate

Probability of detection by identity class
AverageExpression

Averaged gene expression by identity class
AssessNodes

Assess Internal Nodes
AssessSplit

Assess Cluster Split
AddModuleScore

Calculate module scores for gene expression programs in single cells
AddSamples

Add samples into existing Seurat object.
AddImputedScore

Calculate imputed expression values
AddMetaData

Add Metadata
CaseMatch

Match the case of character vectors
CellCycleScoring

Score cell cycle phases
DMPlot

Plot Diffusion map
CellPlot

Cell-cell scatter plot
ClassifyCells

Classify New Data
DESeq2DETest

Differential expression using DESeq2
DMEmbed

Diffusion Maps Cell Embeddings Accessor Function
AveragePCA

Average PCA scores by identity class
BlackAndWhite

A black and white color palette
CollapseSpeciesExpressionMatrix

Slim down a multi-species expression matrix, when only one species is primarily of interenst.
BuildClusterTree

Phylogenetic Analysis of Identity Classes
BuildRFClassifier

Build Random Forest Classifier
CustomPalette

Create a custom color palette
DBClustDimension

Perform spectral density clustering on single cells
DiffExpTest

Likelihood ratio test for zero-inflated data
DiffTTest

Differential expression testing using Student's t-test
ExpSD

Calculate the standard deviation of logged values
ExpVar

Calculate the variance of logged values
FindMarkersNode

Gene expression markers of identity classes defined by a phylogenetic clade
FindVariableGenes

Identify variable genes
GenesInCluster

GenesInCluster
GetAssayData

Accessor function for multimodal data
JackStrawPlot

JackStraw Plot
JoyPlot

Single cell joy plot
BuildSNN

SNN Graph Construction
CalcVarExpRatio

Calculate the ratio of variance explained by ICA or PCA to CCA
CreateSeuratObject

Initialize and setup the Seurat object
MASTDETest

Differential expression using MAST
MakeSparse

Make object sparse
PCAEmbed

PCA Cell Embeddings Accessor Function
DoKMeans

K-Means Clustering
DotPlot

Dot plot visualization
FeaturePlot

Visualize 'features' on a dimensional reduction plot
FetchData

Access cellular data
FitGeneK

Build mixture models of gene expression
DarkTheme

Dark Theme
DimElbowPlot

Quickly Pick Relevant Dimensions
DimHeatmap

Dimensional reduction heatmap
ExtractField

Extract delimiter information from a string.
FastWhichCells

FastWhichCells Identify cells matching certain criteria (limited to character values)
FindConservedMarkers

Finds markers that are conserved between the two groups
FindMarkers

Gene expression markers of identity classes
GetCellEmbeddings

Dimensional Reduction Cell Embeddings Accessor Function
GetCentroids

Get cell centroids
KClustDimension

Perform spectral k-means clustering on single cells
KMeansHeatmap

Plot k-means clusters
MergeNode

Merge childen of a node
MergeSeurat

Merge Seurat Objects
NegBinomRegDETest

Negative binomial test for UMI-count based data (regularized version)
NormalizeData

Normalize Assay Data
PlotClusterTree

Plot phylogenetic tree
PoissonDETest

Poisson test for UMI-count based data
PrintFindClustersParams

Print FindClusters Calculation Parameters
DimTopGenes

Find genes with highest scores for a given dimensional reduction technique
DoHeatmap

Gene expression heatmap
FeatureHeatmap

Vizualization of multiple features
PCALoad

PCA Gene Loadings Accessor Function
PrintCalcParams

Print the calculation
PrintCalcVarExpRatioParams

Print Parameters Associated with CalcVarExpRatio
PrintPCAParams

Print PCA Calculation Parameters
ColorTSNESplit

Color tSNE Plot Based on Split
PrintSNNParams

Print SNN Construction Calculation Parameters
RunPCA

Run Principal Component Analysis on gene expression using IRLBA
RunTSNE

Run t-distributed Stochastic Neighbor Embedding
SampleUMI

Sample UMI
CustomDistance

Run a custom distance function on an input data matrix
DimPlot

Dimensional reduction plot
DimTopCells

Find cells with highest scores for a given dimensional reduction technique
DotPlotOld

Old Dot plot visualization (pre-ggplot implementation) Intuitive way of visualizing how gene expression changes across different identity classes (clusters). The size of the dot encodes the percentage of cells within a class, while the color encodes the AverageExpression level of 'expressing' cells (green is high).
PrintICA

Print the results of a ICA analysis
ReorderIdent

Reorder identity classes
RunCCA

Perform Canonical Correlation Analysis
SetAllIdent

Switch identity class definition to another variable
SetAssayData

Assay Data Mutator Function
ExpMean

Calculate the mean of logged values
FindAllMarkersNode

Find all markers for a node
FindClusters

Cluster Determination
GetGeneLoadings

Dimensional Reduction Gene Loadings Accessor Function
SaveClusters

Save cluster assignments to a TSV file
StashIdent

Set identity class information
SubsetColumn

Return a subset of columns for a matrix or data frame
GenePlot

Scatter plot of single cell data
GetClusters

Get Cluster Assignments
GetDimReduction

Dimensional Reduction Accessor Function
ICTopCells

Find cells with highest ICA scores
ICTopGenes

Find genes with highest ICA scores
VizDimReduction

Visualize Dimensional Reduction genes
VizICA

Visualize ICA genes
FeatureLocator

Feature Locator
FilterCells

Return a subset of the Seurat object
FindAllMarkers

Gene expression markers for all identity classes
ICAEmbed

ICA Cell Embeddings Accessor Function
ICALoad

ICA Gene Loadings Accessor Function
HoverLocator

Hover Locator
ICAPlot

Plot ICA map
ICHeatmap

Independent component heatmap
MinMax

Apply a ceiling and floor to all values in a matrix
NegBinomDETest

Negative binomial test for UMI-count based data
InitialMapping

Infer spatial origins for single cells
JackStraw

Determine statistical significance of PCA scores.
LogNormalize

Normalize raw data
LogVMR

Calculate the variance to mean ratio of logged values
MarkerTest

ROC-based marker discovery
MatrixRowShuffle

Independently shuffle values within each row of a matrix
PCElbowPlot

Quickly Pick Relevant PCs
PCAPlot

Plot PCA map
PCASigGenes

Significant genes from a PCA
PrintAlignSubspaceParams

Print AlignSubspace Calculation Parameters
PrintCCAParams

Print CCA Calculation Parameters
PCHeatmap

Principal component heatmap
PCTopCells

Find cells with highest PCA scores
PCTopGenes

Find genes with highest PCA scores
ProjectPCA

Project Principal Components Analysis onto full dataset
NumberClusters

Convert the cluster labels to a numeric representation
OldDoHeatmap

Gene expression heatmap
PrintDMParams

Print Diffusion Map Calculation Parameters
PrintDim

Print the results of a dimensional reduction analysis
PrintICAParams

Print ICA Calculation Parameters
PrintPCA

Print the results of a PCA analysis
RunDiffusion

Run diffusion map
PrintTSNEParams

Print TSNE Calculation Parameters
ProjectDim

Project Dimensional reduction onto full dataset
Read10X

Load in data from 10X
RunICA

Run Independent Component Analysis on gene expression
SetClusters

Set Cluster Assignments
SetDimReduction

Dimensional Reduction Mutator Function
UpdateSeuratObject

Update old Seurat object to accomodate new features
ValidateClusters

Cluster Validation
ValidateSpecificClusters

Specific Cluster Validation
VariableGenePlot

View variable genes
PurpleAndYellow

A purple and yellow color palette
RemoveFromTable

Remove data from a table
RenameIdent

Rename one identity class to another
SetIdent

Set identity class information
Seurat-deprecated

Deprecated function(s) in the Seurat package
TSNEPlot

Plot tSNE map
TobitTest

Differential expression testing using Tobit models
RefinedMapping

Quantitative refinement of spatial inferences
ScaleData

Scale and center the data.
ScaleDataR

Old R based implementation of ScaleData. Scales and centers the data
SubsetData

Return a subset of the Seurat object
SubsetRow

Return a subset of rows for a matrix or data frame
VizPCA

Visualize PCA genes
VlnPlot

Single cell violin plot
WhichCells

Identify cells matching certain criteria
WilcoxDETest

Differential expression using Wilcoxon Rank Sum
seurat

The Seurat Class
show

show method for seurat
Shuffle

Shuffle a vector
SplitDotPlotGG

Split Dot plot visualization
cc.genes

Cell cycle genes
pbmc_small

A small example version of the PBMC dataset
zfRenderSeurat

Zebrafish analysis functions