Learn R Programming

Seurat (version 2.1.0)

RunDiffusion: Run diffusion map

Description

Run diffusion map

Usage

RunDiffusion(object, cells.use = NULL, dims.use = 1:5, genes.use = NULL,
  reduction.use = "pca", q.use = 0.01, max.dim = 2, scale.clip = 10,
  reduction.name = "dm", reduction.key = "DM", ...)

Arguments

object

Seurat object

cells.use

Which cells to analyze (default, all cells)

dims.use

Which dimensions to use as input features

genes.use

If set, run the diffusion map procedure on this subset of genes (instead of running on a set of reduced dimensions). Not set (NULL) by default

reduction.use

Which dimensional reduction (PCA or ICA) to use for the diffusion map input. Default is PCA

q.use

Quantile to clip diffusion map components at. This addresses an issue where 1-2 cells will have extreme values that obscure all other points. 0.01 by default

max.dim

Max dimension to keep from diffusion calculation

scale.clip

Max/min value for scaled data. Default is 3

reduction.name

dimensional reduction name, specifies the position in the object$dr list. dm by default

reduction.key

dimensional reduction key, specifies the string before the number for the dimension names. DM by default

...

Additional arguments to the diffuse call

Value

Returns a Seurat object with a diffusion map

Examples

Run this code
# NOT RUN {
pbmc_small
# Run Diffusion on variable genes
pbmc_small <- RunDiffusion(pbmc_small,genes.use = pbmc_small@var.genes)
# Run Diffusion map on first 10 PCs
pbmc_small <- RunDiffusion(pbmc_small,genes.use = pbmc_small@var.genes)
# Plot results
DMPlot(pbmc_small)

# }

Run the code above in your browser using DataLab