Learn R Programming

Seurat (version 2.3.4)

MultiModal_CIA: Run coinertia analysis on multimodal data

Description

CIA finds a shared correlation structure betwen two different datasets, enabling integrated downstream analysis

Usage

MultiModal_CIA(object, assay.1 = "RNA", assay.2 = "CITE",
  features.1 = NULL, features.2 = NULL, num.axes = 20,
  normalize.variance = TRUE)

Arguments

object

Seurat object

assay.1

First assay for multimodal analysis. Default is RNA

assay.2

Second assay for multimodal analysis. Default is CITE for CITE-Seq analysis.

features.1

Features of assay 1 to consider (default is variable genes)

features.2

Features of assay 2 to consider (default is all features, i.e. for CITE-Seq, all antibodies)

num.axes

Number of principal axes to compute and store. Default is 20, but will calculate less if either assay has <20 features.

normalize.variance

Return the normalized row scares, so each aexis contributes equally in downstream analysis (default is T)

Value

Returns object after CIA, with results stored in dimensional reduction cia.assay1 (ie. cia.RNA) and cia.assay2. For example, results can be visualized using DimPlot(object,reduction.use="cia.RNA")