Learn R Programming

⚠️There's a newer version (5.0.3) of this package.Take me there.

Seurat v2.3

Seurat is an R toolkit for single cell genomics, developed and maintained by the Satija Lab at NYGC.

Instructions, documentation, and tutorials can be found at:

Seurat is also hosted on GitHub, you can view and clone the repository at

Seurat has been successfully installed on Mac OS X, Linux, and Windows, using the devtools package to install directly from GitHub

Improvements and new features will be added on a regular basis, please contact seuratpackage@gmail.com with any questions or if you would like to contribute

Version History

March 22, 2018

  • Version 2.3
  • Changes:
    • New utility functions
    • Speed and efficiency improvments

January 10, 2018

  • Version 2.2
  • Changes:
    • Support for multiple-dataset alignment with RunMultiCCA and AlignSubspace
    • New methods for evaluating alignment performance

October 12, 2017

  • Version 2.1
  • Changes:
    • Support for using MAST and DESeq2 packages for differential expression testing in FindMarkers
    • Support for multi-modal single-cell data via @assay slot

July 26, 2017

  • Version 2.0
  • Changes:
    • Preprint released for integrated analysis of scRNA-seq across conditions, technologies and species
    • Significant restructuring of code to support clarity and dataset exploration
    • Methods for scoring gene expression and cell-cycle phase

October 4, 2016

  • Version 1.4 released
  • Changes:
    • Improved tools for cluster evaluation/visualizations
    • Methods for combining and adding to datasets

August 22, 2016:

  • Version 1.3 released
  • Changes :
    • Improved clustering approach - see FAQ for details
    • All functions support sparse matrices
    • Methods for removing unwanted sources of variation
    • Consistent function names
    • Updated visualizations

May 21, 2015:

  • Drop-Seq manuscript published. Version 1.2 released
  • Changes :
    • Added support for spectral t-SNE and density clustering
    • New visualizations - including pcHeatmap, dot.plot, and feature.plot
    • Expanded package documentation, reduced import package burden
    • Seurat code is now hosted on GitHub, enables easy install through devtools
    • Small bug fixes

April 13, 2015:

  • Spatial mapping manuscript published. Version 1.1 released (initial release)

Copy Link

Version

Install

install.packages('Seurat')

Monthly Downloads

49,115

Version

2.3.4

License

GPL-3 | file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

July 20th, 2018

Functions in Seurat (2.3.4)

ClassifyCells

Classify New Data
CaseMatch

Match the case of character vectors
CollapseSpeciesExpressionMatrix

Slim down a multi-species expression matrix, when only one species is primarily of interenst.
FindAllMarkers

Gene expression markers for all identity classes
FindAllMarkersNode

Find all markers for a node
DiffTTest

Differential expression testing using Student's t-test
FindGeneTerms

Find gene terms from Enrichr
FetchData

Access cellular data
DimTopCells

Find cells with highest scores for a given dimensional reduction technique
CustomDistance

Run a custom distance function on an input data matrix
DimTopGenes

Find genes with highest scores for a given dimensional reduction technique
DotPlotOld

Old Dot plot visualization (pre-ggplot implementation) Intuitive way of visualizing how gene expression changes across different identity classes (clusters). The size of the dot encodes the percentage of cells within a class, while the color encodes the AverageExpression level of 'expressing' cells (green is high).
DotPlot

Dot plot visualization
DimElbowPlot

Quickly Pick Relevant Dimensions
GetCellEmbeddings

Dimensional Reduction Cell Embeddings Accessor Function
FindMarkers

Gene expression markers of identity classes
FilterCells

Return a subset of the Seurat object
ColorTSNESplit

Color tSNE Plot Based on Split
CustomPalette

Create a custom color palette
CombineIdent

Sets identity class information to be a combination of two object attributes
Convert

Convert Seurat objects to other classes and vice versa
GetCentroids

Get cell centroids
DimHeatmap

Dimensional reduction heatmap
GetClusters

Get Cluster Assignments
GetDimReduction

Dimensional Reduction Accessor Function
DimPlot

Dimensional reduction plot
FastWhichCells

FastWhichCells Identify cells matching certain criteria (limited to character values)
DoHeatmap

Gene expression heatmap
DoKMeans

K-Means Clustering
FeatureHeatmap

Vizualization of multiple features
KClustDimension

Perform spectral k-means clustering on single cells
KMeansHeatmap

Plot k-means clusters
DarkTheme

Dark Theme
CreateSeuratObject

Initialize and setup the Seurat object
ExpMean

Calculate the mean of logged values
DiffExpTest

Likelihood ratio test for zero-inflated data
ExpSD

Calculate the standard deviation of logged values
DMEmbed

Diffusion Maps Cell Embeddings Accessor Function
ICALoad

ICA Gene Loadings Accessor Function
CellCycleScoring

Score cell cycle phases
MarkerTest

ROC-based marker discovery
DMPlot

Plot Diffusion map
FeatureLocator

Feature Locator
LogNormalize

Normalize raw data
FeaturePlot

Visualize 'features' on a dimensional reduction plot
GenesInCluster

GenesInCluster
PCElbowPlot

Quickly Pick Relevant PCs
MatrixRowShuffle

Independently shuffle values within each row of a matrix
PCASigGenes

Significant genes from a PCA
LogVMR

Calculate the variance to mean ratio of logged values
OldDoHeatmap

Gene expression heatmap
CellPlot

Cell-cell scatter plot
ExpVar

Calculate the variance of logged values
DBClustDimension

Perform spectral density clustering on single cells
DESeq2DETest

Differential expression using DESeq2
ExtractField

Extract delimiter information from a string.
PCAEmbed

PCA Cell Embeddings Accessor Function
PCHeatmap

Principal component heatmap
PrintCalcVarExpRatioParams

Print Parameters Associated with CalcVarExpRatio
FindMarkersNode

Gene expression markers of identity classes defined by a phylogenetic clade
FindClusters

Cluster Determination
FindConservedMarkers

Finds markers that are conserved between the two groups
PrintDMParams

Print Diffusion Map Calculation Parameters
PrintSNNParams

Print SNN Construction Calculation Parameters
PCTopCells

Find cells with highest PCA scores
FitGeneK

Build mixture models of gene expression
GetGeneLoadings

Dimensional Reduction Gene Loadings Accessor Function
FindVariableGenes

Identify variable genes
PrintTSNEParams

Print TSNE Calculation Parameters
GetIdent

Get identity of cells
RidgePlot

Single cell ridge plot
MultiModal_CCA

Run Canonical Correlation Analysis (CCA) on multimodal data
GenePlot

Scatter plot of single cell data
HoverLocator

Hover Locator
ICAEmbed

ICA Cell Embeddings Accessor Function
ICTopGenes

Find genes with highest ICA scores
ICAPlot

Plot ICA map
PrintICA

Print the results of a ICA analysis
RunCCA

Perform Canonical Correlation Analysis
PrintICAParams

Print ICA Calculation Parameters
MultiModal_CIA

Run coinertia analysis on multimodal data
Read10X_h5

Read 10X hdf5 file
GetAssayData

Accessor function for multimodal data
JackStraw

Determine statistical significance of PCA scores.
PoissonDETest

Poisson test for UMI-count based data
JackStrawPlot

JackStraw Plot
ScaleDataR

Old R based implementation of ScaleData. Scales and centers the data
SetAllIdent

Switch identity class definition to another variable
PrintAlignSubspaceParams

Print AlignSubspace Calculation Parameters
HTODemux

Demultiplex samples based on data from cell 'hashing'
InitialMapping

Infer spatial origins for single cells
MergeNode

Merge childen of a node
RefinedMapping

Quantitative refinement of spatial inferences
RunMultiCCA

Perform Canonical Correlation Analysis with more than two groups
RunPCA

Run Principal Component Analysis on gene expression using IRLBA
SubsetColumn

Return a subset of columns for a matrix or data frame
ProjectDim

Project Dimensional reduction onto full dataset
MetageneBicorPlot

Plot CC bicor saturation plot
ProjectPCA

Project Principal Components Analysis onto full dataset
SetAssayData

Assay Data Mutator Function
SubsetData

Return a subset of the Seurat object
PurpleAndYellow

A purple and yellow color palette
MergeSeurat

Merge Seurat Objects
NegBinomDETest

Negative binomial test for UMI-count based data
HTOHeatmap

Hashtag oligo heatmap
SetClusters

Set Cluster Assignments
VlnPlot

Single cell violin plot
VizPCA

Visualize PCA genes
ICHeatmap

Independent component heatmap
ICTopCells

Find cells with highest ICA scores
MASTDETest

Differential expression using MAST
StashIdent

Set identity class information
MakeSparse

Make object sparse
NormalizeData

Normalize Assay Data
SubsetByPredicate

Return a subset of the Seurat object.
MinMax

Apply a ceiling and floor to all values in a matrix
Read10X

Load in data from 10X
PCAPlot

Plot PCA map
PCALoad

PCA Gene Loadings Accessor Function
PrintCCAParams

Print CCA Calculation Parameters
NegBinomRegDETest

Negative binomial test for UMI-count based data (regularized version)
PrintDim

Print the results of a dimensional reduction analysis
pbmc_small

A small example version of the PBMC dataset
cc.genes

Cell cycle genes
PrintFindClustersParams

Print FindClusters Calculation Parameters
RunUMAP

Run UMAP
NumberClusters

Convert the cluster labels to a numeric representation
RunDiffusion

Run diffusion map
SampleUMI

Sample UMI
PrintPCA

Print the results of a PCA analysis
PrintCalcParams

Print the calculation
PrintPCAParams

Print PCA Calculation Parameters
PCTopGenes

Find genes with highest PCA scores
RemoveFromTable

Remove data from a table
Seurat-deprecated

Deprecated function(s) in the Seurat package
Shuffle

Shuffle a vector
RenameCells

Rename cells
PlotClusterTree

Plot phylogenetic tree
VizDimReduction

Visualize Dimensional Reduction genes
RunPHATE

Run PHATE
RunICA

Run Independent Component Analysis on gene expression
RenameIdent

Rename one identity class to another
SplitDotPlotGG

Split Dot plot visualization
ReorderIdent

Reorder identity classes
SplitObject

Splits object into a list of subsetted objects.
RunTSNE

Run t-distributed Stochastic Neighbor Embedding
SaveClusters

Save cluster assignments to a TSV file
SubsetRow

Return a subset of rows for a matrix or data frame
TSNEPlot

Plot tSNE map
VizICA

Visualize ICA genes
ScaleData

Scale and center the data.
SetDimReduction

Dimensional Reduction Mutator Function
UpdateSeuratObject

Update old Seurat object to accomodate new features
SetIdent

Set identity class information
TobitTest

Differential expression testing using Tobit models
WhichCells

Identify cells matching certain criteria
ValidateClusters

Cluster Validation
WilcoxDETest

Differential expression using Wilcoxon Rank Sum
TransferIdent

Transfer identity class information (or meta data) from one object to another
ValidateSpecificClusters

Specific Cluster Validation
seurat

The Seurat Class
VariableGenePlot

View variable genes
BatchGene

Identify potential genes associated with batch effects
BlackAndWhite

A black and white color palette
AssessNodes

Assess Internal Nodes
AssessSplit

Assess Cluster Split
BuildSNN

SNN Graph Construction
AddModuleScore

Calculate module scores for gene expression programs in single cells
AddSamples

Add samples into existing Seurat object.
CalcAlignmentMetric

Calculate an alignment score
CalcVarExpRatio

Calculate the ratio of variance explained by ICA or PCA to CCA
AddSmoothedScore

Calculate smoothed expression values
AlignSubspace

Align subspaces using dynamic time warping (DTW)
BuildClusterTree

Phylogenetic Analysis of Identity Classes
BuildRFClassifier

Build Random Forest Classifier
AugmentPlot

Augments ggplot2 scatterplot with a PNG image.
AverageDetectionRate

Probability of detection by identity class
AverageExpression

Averaged gene expression by identity class
AveragePCA

Average PCA scores by identity class
AddImputedScore

Calculate imputed expression values
AddMetaData

Add Metadata