Package for spatio-temporal modelling. Contains functions that estimate, simulate and predict from the model described in (Szpiro et.al., 2010; Sampson et.al., 2011; Lindstr<U+001AD825>t.al., 2010). The package also contains functions that handle missing data SVD in accordance with (Fuentes et.al. 2006).
Package: | SpatioTemporal |
Type: | Package |
Version: | 1.1.7 |
Date: | 2013-08-12 |
License: | GPL version 2 or newer |
LazyLoad: | yes |
Examples in the package uses data from the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air), (Cohen et.al.,2009).
Upates: Handling of log-Gaussian fields
predict.STmodel
,
print.predictSTmodel
,
plot.predictSTmodel
,
predictCV.STmodel
,
print.predCVSTmodel
,
summary.predCVSTmodel
,
plot.predCVSTmodel
,
qqnorm.predCVSTmodel
, and
scatterPlot.predCVSTmodel
. Updated
predict.STmodel
to compute temporal
averages, and return both prediction and variance of the
averages. Both for Gaussian and log-Gaussian data.
Upates: sparse-Matrices and temporal basis functions
makeSigmaB
and makeSigmaNu
;
this reduces the memory footprint and execution time for
loglikeST
, predict.STmodel
,
and estimate.STmodel
. Added function
that does regression estimates of the beta-coefficients:
estimateBetaFields
. Altered
computation of CV-statistics in
SVDsmoothCV
. Added
boxplot.SVDcv
for illustration of
CV-statistics from SVDsmoothCV
.
Replaced updateSTdataTrend
with
updateTrend.STdata
and
updateTrend.STmodel
that also allows for
temporal trends defined using functions. Updated
SVDsmooth
, SVDsmoothCV
, and
calcSmoothTrends
to return both the trend
and the smoothing function used to compute the trends,
simplifying interpolation at unobserved time-points.
Updated example data-sets. Added options for
computation of temporal averages (incl. variances) to
predict.STmodel
and
predictCV.STmodel
. Major bug fixes:
predict.STmodel
, predictions now
always uses the trend given in object
,
ignoring the trend object in STdata
. Prediction at
dates in STdata
are computed using the smoothing
function that defines the trend; see
updateTrend.STmodel
for details. In
summary.predCVSTmodel
, code previously
divided by the wrong variance when computing adjusted R2
using the pred.naive
option. In
summary.predCVSTmodel
, code previously
returned statistics even for dates without observations
when using by.date=TRUE
. In
plot.STdata
and plot.STmodel
code now accounts for missing time-points when computing
acf and pacf. Added plot funcions/Minor fixes:
scatterPlot.STdata
,
scatterPlot.STmodel
, and
scatterPlot.predCVSTmodel
for plotting
observations/residuals against covariates. Added
plot.mcmcSTmodel
,
density.mcmcSTmodel
, and
plot.density.mcmcSTmodel
for plotting of
MCMC results. Added qqnorm.STdata
,
qqnorm.STmodel
, and
qqnorm.predCVSTmodel
for plotting of data
and CV-prediction results. Added a restart
option to estimate.STmodel
allowing for
restarts of optimisation in cases on bad optimisation.
Minor changes/Bug fixes:
predictNaive
that caused computations to take unnecessarily long.
Minor changes/Bug fixes:
SVDsmooth
, that caused
the values in the temporal smooths to depend on the
number of unobserved time points.. This also
affects calcSmoothTrends
and
updateSTdataTrend
when the option
extra.dates
is in use. Fixed bug in
simulate.STmodel
that caused NA
values when simulating at unobserved sites. Fixed
bug in predict.STmodel
that could cause
errors when predicting at unobserved sites. Fixed
bug in predictCV.STmodel
and
predict.STmodel
; these will now handle
predictions at locations with incomplete nugget
covariates. Updated c.STmodel
and
predict.STmodel
to avoid errors/warnings
due to more complex nugget models. Replaced
warning in createSTdata
when
extra.dates!=NULL
and n.basis=NULL
with a
message. Bug fixes:
c.STmodel
will now combine
STmodel
objects with identical covariate scaling.
Major Changes:
beta
in
predict.STmodel
. Reduced the memory
footprint of predict.STmodel
. Error
checks in c.STmodel
and
predict.STmodel
, combination of
STmodel
objects with different covariate scaling
is NOT possible. Added:
plot.predCVSTmodel
.
coef.estimateSTmodel
and
coef.estCVSTmodel
functions that extract
estimated parameters. Parameters for
predict.STmodel
and
predictCV.STmodel
can be specified using
estimateSTmodel
or estCVSTmodel
objects.
An lwd
option to
plot.predictSTmodel
. A short
introductory vignette as complement to the full
tutorial. Bug fixes:
predictNaive
now works for only one
locations. detrendSTdata
now works
for different regions. Added packages
maps
and plotrix
to suggested packages.
Bug fixes:
Minor bug fixes
Updated documentation and vignette
Major change, most old functions are now deprecated. New features:
Minor updates - no user visible changes
First CRAN-release
First released version, short course at TIES-2010
M. A. Cohen, S. D. Adar, R. W. Allen, E. Avol, C. L. Curl, T. Gould, D. Hardie, A. Ho, P. Kinney, T. V. Larson, P. D. Sampson, L. Sheppard, K. D. Stukovsky, S. S. Swan, L. S. Liu, J. D. Kaufman. (2009) Approach to Estimating Participant Pollutant Exposures in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Environmental Science & Technology: 43(13), 4687-4693.
M. Fuentes, P. Guttorp, and P. D. Sampson. (2006) Using Transforms to Analyze Space-Time Processes in Statistical methods for spatio-temporal systems (B. Finkenst<e4>dt, L. Held, V. Isham eds.) 77-150
J. Lindstr<U+001ADB20>A. Szpiro, P. D. Sampson, L. Sheppard, A. Oron, M. Richards, and T. Larson T. (2010) A flexible spatio-temmporal model for air pollution: allowing for spatio-temporal covariates. Berkeley Electronic Press, University of Washington Biostatistics Working Paper Series, No. 370. http://www.bepress.com/uwbiostat/paper370
A. Szpiro, P. D. Sampson, L. Sheppard, T. Lumley, S. D. Adar, and J. D. Kaufman. (2010) Predicting intra-urban variation in air pollution concentrations with complex spatio-temporal dependencies. Environmetrics: 21, 606-631.
P. D. Sampson, A. Szpiro, L. Sheppard, J. Lindstr<U+001ADB20>J. D. Kaufman. (2011) Pragmatic Estimation of a Spatio-temporal Air Quality Model with Irregular Monitoring Data. Atmospheric Environment: 45(36), 6593-6606.
# NOT RUN {
##For a short introduction see:
# }
# NOT RUN {
vignette("ST_intro",package="SpatioTemporal")
# }
# NOT RUN {
##For a worked out data-analysis exmaple see the tutorial.
##NOTE: This vignette is still work in progress
# }
# NOT RUN {
vignette("Tutorial",package="SpatioTemporal")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab