Learn R Programming

StratifiedSampling package

In this R package, different functions are implemented for selecting samples .

The package contains also some useful functions. Look at the manual of the package for more information.

Installation

CRAN version

install.packages("StratifiedSampling")

Latest version

You can install the latest version of the package StratifiedSampling with the following command:

# install.packages("devtools")
devtools::install_github("Rjauslin/StratifiedSampling")

Optimal transport matching

The package proposes a method to do statistical matching using optimal transport and balanced sampling. For more details see Raphaël Jauslin and Yves Tillé (2021) https://arxiv.org/abs/2105.08379. A complete example on how to use the package to make an optimal statistical transport match can be found in the following vignette:

vignette("ot_matching", package = "StratifiedSampling")

Sequential spatially balanced sampling

The package proposes a method to select a well-spread sample balanced on some auxiliary variables. For more details see Raphaël Jauslin and Yves Tillé (2022) https://arxiv.org/abs/2112.01164. A complete example on how to use the different functions to select a well-spread and balanced sample can be found in the following vignette:

vignette("sequential_balanced", package = "StratifiedSampling")

Simple example on stratified population

Integrating a stratified structure in the population in a sampling design can considerably reduce the variance of the Horvitz-Thompson estimator. We propose in this package different methods to handle the selection of a balanced sample in stratified population. For more details see Raphaël Jauslin, Esther Eustache and Yves Tillé (2021) https://doi.org/10.1007/s42081-021-00134-y.

This basic example shows you how to set up a stratified sampling design. The example is done on the swissmunicipalities dataset from the package sampling.

library(sampling)
library(StratifiedSampling)
#> Le chargement a nécessité le package : Matrix

data(swissmunicipalities)
swiss <- swissmunicipalities
X <- cbind(swiss$HApoly,
        swiss$Surfacesbois,
        swiss$P00BMTOT,
        swiss$P00BWTOT,
        swiss$POPTOT,
        swiss$Pop020,
        swiss$Pop2040,
        swiss$Pop4065,
        swiss$Pop65P,
        swiss$H00PTOT )

X <- X[order(swiss$REG),]
strata <- swiss$REG[order(swiss$REG)]

Strata are NUTS region of the Switzerland. Inclusion probabilities pik is set up equal within strata and such that the sum of the inclusion probabilities within strata is equal to 80.

pik <- sampling::inclusionprobastrata(strata,rep(80,7))

It remains to use the function stratifiedcube().

s <- stratifiedcube(X,strata,pik)

We can check that we have correctly selected the sample. It is balanced and have the right number of units selected in each stratum.

head(s)
#> [1] 0 1 0 0 1 0

sum(s)
#> [1] 560
t(X/pik)%*%s
#>          [,1]
#>  [1,] 4035368
#>  [2,] 1279586
#>  [3,] 3736660
#>  [4,] 3901323
#>  [5,] 7637982
#>  [6,] 1734546
#>  [7,] 2289617
#>  [8,] 2443589
#>  [9,] 1170231
#> [10,] 3301463
t(X/pik)%*%pik
#>          [,1]
#>  [1,] 3998831
#>  [2,] 1270996
#>  [3,] 3567567
#>  [4,] 3720443
#>  [5,] 7288010
#>  [6,] 1665613
#>  [7,] 2141059
#>  [8,] 2362332
#>  [9,] 1119006
#> [10,] 3115399

Xcat <- disj(strata)

t(Xcat)%*%s
#>      [,1]
#> [1,]   80
#> [2,]   80
#> [3,]   80
#> [4,]   80
#> [5,]   80
#> [6,]   80
#> [7,]   80
t(Xcat)%*%pik
#>      [,1]
#> [1,]   80
#> [2,]   80
#> [3,]   80
#> [4,]   80
#> [5,]   80
#> [6,]   80
#> [7,]   80

Copy Link

Version

Install

install.packages('StratifiedSampling')

Monthly Downloads

102

Version

0.4.1

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Last Published

October 26th, 2022

Functions in StratifiedSampling (0.4.1)

findB

Find best sub-matrix B in stratifiedcube
gencalibRaking

Generalized calibration using raking ratio
landingRM

Landing by suppression of variables
fbs

Fast Balanced Sampling
qfromw

q from w
ffphase

Fast flight phase of the cube method
piktfrompik

pikt from pik
inclprob

Inclusion Probabilities
vApp

Approximated variance for balanced sample
vDBS

Variance Estimation for Doubly Balanced Sample.
varEst

Estimator of the approximated variance for balanced sampling
stratifiedcube

Stratified Sampling
sfromq

s from q
pikfromq

pik from q
otmatch

Statistical Matching using Optimal transport
vEst

Variance Estimation for balanced sample
varApp

Approximated variance for balanced sampling
osod

One-step One Decision sampling method
sys_deville

Deville's systematic
ncat

Number of categories
sys_devillepi2

Second order inclusion probabilities of Deville's systematic
maxentpi2

Joint inclusion probabilities of maximum entropy.
bsmatch

Statistical matching using optimal transport and balanced sampling
disj

Disjunctive
cps

Conditional Poisson sampling design
balstrat

Balanced Stratification
c_bound

C bound
calibRaking

Calibration using raking ratio
c_bound2

C bound
distUnitk

Squared Euclidean distances of the unit k.
disjMatrix

Disjunctive for matrix
balseq

Sequential balanced sampling
harmonize

Harmonization by calibration