analyzeTPPTR(configTable, data = NULL, resultPath = NULL, idVar = "gene_name", fcStr = "rel_fc_", ciStr = NULL, naStrs = c("NA", "n/d", "NaN", ""), qualColName = "qupm", normalize = TRUE, normReqs = tpptrDefaultNormReqs(), ggplotTheme = tppDefaultTheme(), nCores = "max", startPars = c(Pl = 0, a = 550, b = 10), maxAttempts = 500, plotCurves = TRUE, fixedReference = NULL, pValMethod = "maxQuant", pValFilter = list(minR2 = 0.8, maxPlateau = 0.3), pValParams = list(binWidth = 300), verbose = FALSE, xlsxExport = TRUE)
details
for instructions how to create this object.configTable
argument.fcStr
will be regarded as containing fold change values.na.strings
in function read.delim
.nls
for curve fitting.openxlsx
and a zip application to be
installed).tpptrImport
function. tpptrNormalize
function. To perform normalization,
set argument normalize=TRUE
. The normalization will be filtered
according to the criteria specified in the normReqs
argument (also
see the documentation of tpptrNormalize
and
tpptrDefaultNormReqs
for further information). tpptrCurveFit
. tpptrAnalyzeMeltingCurves
.
tppExport
.
The default settings are tailored towards the output of the python package
isobarQuant, but can be customised to your own dataset by the arguments
idVar, fcStr, naStrs, qualColName
.
If resultPath
is not specified, the location of the first input file
specified in configTable
will be used. If the input data are not
specified in configTable
, no result path will be set. This means
that no output files or melting curve plots are produced and
analyzeTPPTR
just returns the results as a data frame.
The function analyzeTPPTR
reports intermediate results to the
command line. To suppress this, use suppressMessages
.
The configTable
argument is a dataframe, or the path to a
spreadsheet (tab-delimited text-file or xlsx format). Information about
each experiment is stored row-wise. It contains the following columns:
Path
:location of each datafile. Alternatively,
data can be directly handed over by the data
argument.
Experiment
: unique experiment names.
Condition
: experimental conditions of each dataset.
The argument nCores
could be either 'max' (use all available cores)
or an upper limit of CPUs to be used.
The melting curve plots will be stored in a subfolder with name
Melting_Curves
at the location specified by resultPath
.
If the melting curve fitting procedure does not converge, it will be
repeatedly started from perturbed starting parameters (maximum iterations
defined by argument maxAttempts
).
data(hdacTR_smallExample)
tpptrResults <- analyzeTPPTR(configTable=hdacTR_config, data=hdacTR_data, nCores=1)
Run the code above in your browser using DataLab