analyzeTPPTR(configTable, data = NULL, resultPath = NULL, idVar = "gene_name", fcStr = "rel_fc_", ciStr = NULL, naStrs = c("NA", "n/d", "NaN", ""), qualColName = "qupm", normalize = TRUE, normReqs = tpptrDefaultNormReqs(), ggplotTheme = tppDefaultTheme(), nCores = "max", startPars = c(Pl = 0, a = 550, b = 10), maxAttempts = 500, plotCurves = TRUE, fixedReference = NULL, pValMethod = "maxQuant", pValFilter = list(minR2 = 0.8, maxPlateau = 0.3), pValParams = list(binWidth = 300), verbose = FALSE, xlsxExport = TRUE) details for instructions how to create this object.configTable argument.fcStr
will be regarded as containing fold change values.na.strings in function read.delim.nls for curve fitting.openxlsx and a zip application to be
installed).tpptrImport function. tpptrNormalize function. To perform normalization,
set argument normalize=TRUE. The normalization will be filtered
according to the criteria specified in the normReqs argument (also
see the documentation of tpptrNormalize and
tpptrDefaultNormReqs for further information). tpptrCurveFit. tpptrAnalyzeMeltingCurves.
tppExport.
The default settings are tailored towards the output of the python package
isobarQuant, but can be customised to your own dataset by the arguments
idVar, fcStr, naStrs, qualColName.
If resultPath is not specified, the location of the first input file
specified in configTable will be used. If the input data are not
specified in configTable, no result path will be set. This means
that no output files or melting curve plots are produced and
analyzeTPPTR just returns the results as a data frame.
The function analyzeTPPTR reports intermediate results to the
command line. To suppress this, use suppressMessages.
The configTable argument is a dataframe, or the path to a
spreadsheet (tab-delimited text-file or xlsx format). Information about
each experiment is stored row-wise. It contains the following columns:
Path:location of each datafile. Alternatively,
data can be directly handed over by the data argument.
Experiment: unique experiment names.
Condition: experimental conditions of each dataset.
The argument nCores could be either 'max' (use all available cores)
or an upper limit of CPUs to be used.
The melting curve plots will be stored in a subfolder with name
Melting_Curves at the location specified by resultPath.
If the melting curve fitting procedure does not converge, it will be
repeatedly started from perturbed starting parameters (maximum iterations
defined by argument maxAttempts).
data(hdacTR_smallExample)
tpptrResults <- analyzeTPPTR(configTable=hdacTR_config, data=hdacTR_data, nCores=1)
Run the code above in your browser using DataLab