message('Running TITAN ...')
#### LOAD DATA ####
infile <- system.file("extdata", "test_alleleCounts_chr2.txt",
package = "TitanCNA")
data <- loadAlleleCounts(infile)
#### LOAD PARAMETERS ####
message('titan: Loading default parameters')
numClusters <- 2
params <- loadDefaultParameters(copyNumber = 5,
numberClonalClusters = numClusters, skew = 0.1)
#### READ COPY NUMBER FROM HMMCOPY FILE ####
message('titan: Correcting GC content and mappability biases...')
tumWig <- system.file("extdata", "test_tum_chr2.wig", package = "TitanCNA")
normWig <- system.file("extdata", "test_norm_chr2.wig", package = "TitanCNA")
gc <- system.file("extdata", "gc_chr2.wig", package = "TitanCNA")
map <- system.file("extdata", "map_chr2.wig", package = "TitanCNA")
cnData <- correctReadDepth(tumWig, normWig, gc, map)
logR <- getPositionOverlap(data$chr, data$posn, cnData)
data$logR <- log(2^logR) #transform to natural log
#### FILTER DATA FOR DEPTH, MAPPABILITY, NA, etc ####
data <- filterData(data, 1:24, minDepth = 10, maxDepth = 200, map = NULL)
#### EM (FWD-BACK) TO TRAIN PARAMETERS ####
#### Can use parallelization packages ####
K <- length(params$genotypeParams$alphaKHyper)
params$genotypeParams$alphaKHyper <- rep(500, K)
params$ploidyParams$phi_0 <- 1.5
convergeParams <- runEMclonalCN(data, gParams = params$genotypeParams,
nParams = params$normalParams,
pParams = params$ploidyParams,
sParams = params$cellPrevParams,
maxiter = 3, maxiterUpdate = 500,
txnExpLen = 1e15, txnZstrength = 5e5,
useOutlierState = FALSE,
normalEstimateMethod = "map",
estimateS = TRUE, estimatePloidy = TRUE)
Run the code above in your browser using DataLab