# Example 1
N = 10; s1 = exp(1); s2 = exp(2)
y = rbetabin.ab(n = 100, size = N, shape1 = s1, shape2 = s2)
fit = vglm(cbind(y, N-y) ~ 1, betabin.ab, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
head(fit@misc$rho) # The correlation parameter
head(cbind(fit@y, weights(fit, type = "prior")))
# Example 2
fit = vglm(cbind(R, N-R) ~ 1, betabin.ab, data = lirat,
trace = TRUE, subset = N > 1)
coef(fit, matrix = TRUE)
Coef(fit)
fit@misc$rho # The correlation parameter
t(fitted(fit))
t(fit@y)
t(weights(fit, type = "prior"))
# A "loge" link for the 2 shape parameters is a logistic regression:
all.equal(c(fitted(fit)),
c(logit(predict(fit)[, 1] - predict(fit)[, 2], inverse = TRUE)))
# Example 3, which is more complicated
lirat = transform(lirat, fgrp = factor(grp))
summary(lirat) # Only 5 litters in group 3
fit2 = vglm(cbind(R, N-R) ~ fgrp + hb, betabin.ab(zero = 2),
data = lirat, trace = TRUE, subset = N > 1)
coef(fit2, matrix = TRUE)
Coef(fit2)
coef(fit2, matrix = TRUE)[, 1] - coef(fit2, matrix = TRUE)[, 2] # logit(p)
with(lirat, plot(hb[N>1], fit2@misc$rho,
xlab = "Hemoglobin", ylab = "Estimated rho",
pch = as.character(grp[N>1]), col = grp[N>1]))
# cf. Figure 3 of Moore and Tsiatis (1991)
with(lirat, plot(hb, R/N, pch = as.character(grp), col = grp, las = 1,
xlab = "Hemoglobin level", ylab = "Proportion Dead",
main = "Fitted values (lines)"))
smalldf = with(lirat, lirat[N>1,])
for(gp in 1:4) {
xx = with(smalldf, hb[grp == gp])
yy = with(smalldf, fitted(fit2)[grp == gp])
ooo = order(xx)
lines(xx[ooo], yy[ooo], col = gp) }
Run the code above in your browser using DataLab