quasipoissonff(link = "loge", onedpar = FALSE,
parallel = FALSE, zero = NULL)
Links
for more choices.onedpar=TRUE
will pool them so that there is only
one dispersion parameterIf the dispersion parameter is unknown, then the resulting estimate is not fully a maximum likelihood estimate.
A dispersion parameter that is less/greater than unity corresponds to under-/over-dispersion relative to the Poisson model. Over-dispersion is more common in practice.
When fitting a Quadratic RR-VGLM, the response is a matrix of $M$, say, columns (e.g., one column per species). Then there will be $M$ dispersion parameters (one per column of the response matrix).
poissonff
,
negbinomial
,
loge
,
rrvglm
,
cqo
,
cao
,
binomialff
,
quasibinomialff
,
quasipoisson
.quasipoissonff()
n = 200; p = 5; S = 5
mydata = rcqo(n, p, S, fam="poisson", EqualTol=FALSE)
myform = attr(mydata, "formula")
p1 = cqo(myform, fam=quasipoissonff, EqualTol=FALSE, data=mydata)
sort(p1@misc$deviance.Bestof) # A history of all the iterations
lvplot(p1, y=TRUE, lcol=1:S, pch=1:S, pcol=1:S)
summary(p1) # The dispersion parameters are estimated
Run the code above in your browser using DataLab