# A special case: exponential data
edata <- data.frame(y = rexp(n <- 1000))
fit = vglm(y ~ 1, fam = expexp, edata, trace = TRUE, maxit = 99)
coef(fit, matrix=TRUE)
Coef(fit)
# Ball bearings data (number of million revolutions before failure)
bbearings = c(17.88, 28.92, 33.00, 41.52, 42.12, 45.60,
48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64,
68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92,
128.04, 173.40)
fit <- vglm(bbearings ~ 1, fam = expexp(iscale = 0.05, ish = 5),
trace = TRUE, maxit = 300)
coef(fit, matrix = TRUE)
Coef(fit) # Authors get c(shape=5.2589, scale=0.0314)
logLik(fit) # Authors get -112.9763
# Failure times of the airconditioning system of an airplane
acplane = c(23, 261, 87, 7, 120, 14, 62, 47,
225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14,
71, 11, 14, 11, 16, 90, 1, 16, 52, 95)
fit = vglm(acplane ~ 1, fam = expexp(ishape = 0.8, isc = 0.15),
trace = TRUE, maxit = 99)
coef(fit, matrix = TRUE)
Coef(fit) # Authors get c(shape=0.8130, scale=0.0145)
logLik(fit) # Authors get log-lik -152.264
Run the code above in your browser using DataLab