The following concerns loge.
For deriv = 0, the log of theta, i.e., log(theta)
when inverse = FALSE, and if inverse = TRUE then
exp(theta).
For deriv = 1, then the function returns
dtheta / deta as a function of theta
if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.
Here, all logarithms are natural logarithms, i.e., to base $e$.
Details
The log link function is very commonly used for parameters that
are positive.
Numerical values of theta close to 0 or out of range
result in
Inf, -Inf, NA or NaN.
The function loge computes
$\log(\theta)$ whereas nloge computes
$-\log(\theta)=\log(1/\theta)$.
References
McCullagh, P. and Nelder, J. A. (1989)
Generalized Linear Models, 2nd ed. London: Chapman & Hall.