zapoisson(lpobs0 = "logit", llambda = "loge", zero = NULL)
pobs0
here.
See Links
for more choices.Links
for more choices.CommonVGAMffArguments
for more information."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
The fitted.values
slot of the fitted object,
which should be extracted by the generic function fitted
,
returns the mean $\mu$ which is given by
For one response/species, by default, the two linear/additive predictors are $(logit(p_0), \log(\lambda))^T$. Fisher scoring is implemented.
Angers, J-F. and Biswas, A. (2003) A Bayesian analysis of zero-inflated generalized Poisson model. Computational Statistics & Data Analysis, 42, 37--46.
Documentation accompanying the
rzapois
,
zipoisson
,
pospoisson
,
posnegbinomial
,
binomialff
,
rpospois
,
CommonVGAMffArguments
.zapdata <- data.frame(x2 = runif(nn <- 1000))
zapdata <- transform(zapdata, pobs0 = logit( -1 + 1*x2, inverse = TRUE),
lambda = loge(-0.5 + 2*x2, inverse = TRUE))
zapdata <- transform(zapdata, y = rzapois(nn, lambda, pobs0 = pobs0))
with(zapdata, table(y))
fit <- vglm(y ~ x2, zapoisson, zapdata, trace = TRUE)
fit <- vglm(y ~ x2, zapoisson, zapdata, trace = TRUE, crit = "coef")
head(fitted(fit))
head(predict(fit))
head(predict(fit, untransform = TRUE))
coef(fit, matrix = TRUE)
summary(fit)
# Another example ------------------------------
# Data from Angers and Biswas (2003)
abdata <- data.frame(y = 0:7, w = c(182, 41, 12, 2, 2, 0, 0, 1))
abdata <- subset(abdata, w > 0)
yy <- with(abdata, rep(y, w))
fit3 <- vglm(yy ~ 1, zapoisson, trace = TRUE, crit = "coef")
coef(fit3, matrix = TRUE)
Coef(fit3) # Estimate lambda (they get 0.6997 with SE 0.1520)
head(fitted(fit3), 1)
mean(yy) # compare this with fitted(fit3)
Run the code above in your browser using DataLab