Learn R Programming

bclust (version 1.5)

imp: calculates variable and variable-cluster importances

Description

The function computes the log Bayes factors for the hypothesis H0: the variable or the variable-cluster combination is useful for clustering against H1: the variable or the variable-cluster combination is useless. The Bayes factors are computed for the optimal allocation found by the bclust function.

Usage

imp(x)

Arguments

x
A bclustvs object.

Value

var
A vector being the log Bayes factor of $d_{v}=1$ against $d_{v}=0$, see bclust for details.
varclust
A vector being the log Bayes factor of $g_{vc}=1$ against $g_{vc}=0$, see bclust for details.
repno
The number of replicates producing each row of varclust.
labels
The vector of variable labels extracted from the bclustvs object.
order
The order of var useful to sort var, varclust, and labels.

See Also

bclust.

Examples

Run this code
data(gaelle)

gaelle.id<-rep(1:14,c(3,rep(4,13))) 
# first 3 rows replication of ColWT, 4 for the rest

gaelle.bclust<-bclust(gaelle,rep.id=gaelle.id,
transformed.par=c(-1.84,-0.99,1.63,0.08,-0.16,-1.68),
var.select=TRUE)

gaelle.imp<-imp(gaelle.bclust)

#plot the variable importances 
par(mfrow=c(1,1)) #retreive graphic defaults 

mycolor<-gaelle.imp$var
mycolor<-c()
mycolor[gaelle.imp$var>0]<-"black"
mycolor[gaelle.imp$var<=0]<-"white"

viplot(var=gaelle.imp$var,xlab=gaelle.imp$labels,col=mycolor)
#plot important variables with balck

viplot(var=gaelle.imp$var,xlab=gaelle.imp$labels,
sort=TRUE,col=heat.colors(length(gaelle.imp$var)),
xlab.mar=10,ylab.mar=4)
mtext(1, text = "Metabolite", line = 7,cex=1.5)# add x axis label
mtext(2, text = "Log Bayes Factor", line = 3,cex=1.2)# add y axis labels
#sort importnaces and use heat colors add some labels to the x and y axes

Run the code above in your browser using DataLab