# NOT RUN {
# Calculate the operating characteristics for
# non-informative four-stage hierarchical testing.
config.mat <- matrix(data = c(rep(1, 24), rep(1, 16), rep(2, 8),
rep(1, 8), rep(2, 8), rep(3, 4),
rep(4, 2), rep(5, 2), 1:24),
nrow = 4, ncol = 24, byrow = TRUE)
calc1 <- opChar1(algorithm = "D4", p = 0.01, Se = 0.99, Sp = 0.99,
hier.config = config.mat, a = c(1, 9, 17, 21, 23))
summary(calc1)
# Calculate the operating characteristics for
# informative array testing without master pooling.
calc2 <- opChar1(algorithm = "IA2", p = 0.025, alpha = 0.5,
Se = 0.95, Sp = 0.99, rowcol.sz = 12)
summary(calc2)
# Calculate the operating characteristics for
# informative two-stage hierarchical testing.
config.mat <- matrix(data = c(rep(1, 5), rep(2, 4), 1, 1:10),
nrow = 2, ncol = 10, byrow = TRUE)
Se <- matrix(data = c(rep(0.95, 2), rep(0.99, 2)),
nrow = 2, ncol = 2, byrow = FALSE)
Sp <- matrix(data = c(rep(0.96, 2), rep(0.98, 2)),
nrow = 2, ncol = 2, byrow = FALSE)
calc3 <- opChar2(algorithm = "ID2", alpha = c(18.25, 0.75, 0.75, 0.25),
Se = Se, Sp = Sp, hier.config = config.mat)
summary(calc3)
# Calculate the operating characteristics for
# non-informative array testing with master pooling.
calc4 <- opChar2(algorithm = "A2M", p.vec = c(0.92, 0.05, 0.02, 0.01),
Se = rep(0.95, 2), Sp = rep(0.99, 2), rowcol.sz = 8)
summary(calc4)
# }
Run the code above in your browser using DataLab