powered by
Let \(X=logit^{-1}(Y)\) be a transformation of a random variable \(Y\). This function computes the jacobian \(J(x)\) when using the density of \(Y\) to evaluate the density of \(X\) via $$f(x) = f_y(logit(x)) J(x)$$ where $$J(x) = d/dx logit(x).$$
jac.invlogit(x, log = TRUE)
value at which to evaluate \(J(x)\)
TRUE to return \(log(J(x))\)
# NOT RUN { jac.invlogit(1) # }
Run the code above in your browser using DataLab