data(learning.test)
# learn the network structure.
cpdag = pc.stable(learning.test)
# set the direction of the only undirected arc, A - B.
dag = set.arc(cpdag, "A", "B")
# estimate the parameters of the Bayesian network.
fitted = bn.fit(dag, learning.test)
# replace the parameters of the node B.
new.cpt = matrix(c(0.1, 0.2, 0.3, 0.2, 0.5, 0.6, 0.7, 0.3, 0.1),
byrow = TRUE, ncol = 3,
dimnames = list(B = c("a", "b", "c"), A = c("a", "b", "c")))
fitted$B = as.table(new.cpt)
# the network structure is still the same.
all.equal(dag, bn.net(fitted))
# learn the network structure.
dag = hc(gaussian.test)
# estimate the parameters of the Bayesian network.
fitted = bn.fit(dag, gaussian.test)
# replace the parameters of the node F.
fitted$F = list(coef = c(1, 2, 3, 4, 5), sd = 3)
# set again the original parameters
fitted$F = lm(F ~ A + D + E + G, data = gaussian.test)
# discrete Bayesian network from expert knowledge.
dag = model2network("[A][B][C|A:B]")
cptA = matrix(c(0.4, 0.6), ncol = 2, dimnames = list(NULL, c("LOW", "HIGH")))
cptB = matrix(c(0.8, 0.2), ncol = 2, dimnames = list(NULL, c("GOOD", "BAD")))
cptC = c(0.5, 0.5, 0.4, 0.6, 0.3, 0.7, 0.2, 0.8)
dim(cptC) = c(2, 2, 2)
dimnames(cptC) = list("C" = c("TRUE", "FALSE"), "A" = c("LOW", "HIGH"),
"B" = c("GOOD", "BAD"))
cfit = custom.fit(dag, dist = list(A = cptA, B = cptB, C = cptC))
# for ordinal nodes it is nearly the same.
cfit = custom.fit(dag, dist = list(A = cptA, B = cptB, C = cptC),
ordinal = c("A", "B"))
# Gaussian Bayesian network from expert knowledge.
distA = list(coef = c("(Intercept)" = 2), sd = 1)
distB = list(coef = c("(Intercept)" = 1), sd = 1.5)
distC = list(coef = c("(Intercept)" = 0.5, "A" = 0.75, "B" = 1.32), sd = 0.4)
cfit = custom.fit(dag, dist = list(A = distA, B = distB, C = distC))
# conditional Gaussian Bayesian network from expert knowledge.
cptA = matrix(c(0.4, 0.6), ncol = 2, dimnames = list(NULL, c("LOW", "HIGH")))
distB = list(coef = c("(Intercept)" = 1), sd = 1.5)
distC = list(coef = matrix(c(1.2, 2.3, 3.4, 4.5), ncol = 2,
dimnames = list(c("(Intercept)", "B"), NULL)),
sd = c(0.3, 0.6))
cgfit = custom.fit(dag, dist = list(A = cptA, B = distB, C = distC))
Run the code above in your browser using DataLab