Durbin, J., & Koopman, S. (2002). A Simple and Efficient Simulation
Smoother for State Space Time Series Analysis. Biometrika, 89(3), 603-615.
Shephard, N., & Pitt, M. (1997). Likelihood Analysis of
Non-Gaussian Measurement Time Series. Biometrika, 84(3), 653-667.
Gordon, NJ, Salmond, DJ, Smith, AFM (1993).
Novel approach to nonlinear/non-Gaussian Bayesian state estimation.
IEE Proceedings-F, 140, 107-113.
Vihola, M, Helske, J, Franks, J. Importance sampling type estimators
based on approximate marginal Markov chain Monte Carlo.
Scand J Statist. 2020; 1-38. https://doi.org/10.1111/sjos.12492
Van Der Merwe, R, Doucet, A, De Freitas, N, Wan, EA (2001).
The unscented particle filter.
In Advances in neural information processing systems, p 584-590.
Jazwinski, A 1970. Stochastic Processes and Filtering Theory.
Academic Press.
Kitagawa, G (1996). Monte Carlo filter and smoother for non-Gaussian
nonlinear state space models.
Journal of Computational and Graphical Statistics, 5, 1-25.