# NOT RUN {
# ===========================================================================
# Using the raw data
# ===========================================================================
### Bootstrap (default) -----------------------------------------------------
res_boot1 <- resampleData(.data = satisfaction)
str(res_boot1, max.level = 3, list.len = 3)
## To replicate a bootstrap draw use .seed:
res_boot1a <- resampleData(.data = satisfaction, .seed = 2364)
res_boot1b <- resampleData(.data = satisfaction, .seed = 2364)
identical(res_boot1, res_boot1a) # TRUE
### Jackknife ---------------------------------------------------------------
res_jack <- resampleData(.data = satisfaction, .resample_method = "jackknife")
str(res_jack, max.level = 3, list.len = 3)
### Cross-validation --------------------------------------------------------
## Create dataset for illustration:
dat <- data.frame(
"x1" = rnorm(100),
"x2" = rnorm(100),
"group" = sample(c("male", "female"), size = 100, replace = TRUE),
stringsAsFactors = FALSE)
## 10-fold cross-validation (repeated 100 times)
cv_10a <- resampleData(.data = dat, .resample_method = "cross-validation",
.R = 100)
str(cv_10a, max.level = 3, list.len = 3)
# Cross-validation can be done by group if a group identifyer is provided:
cv_10 <- resampleData(.data = dat, .resample_method = "cross-validation",
.id = "group", .R = 100)
## Leave-one-out-cross-validation (repeated 50 times)
cv_loocv <- resampleData(.data = dat[, -3],
.resample_method = "cross-validation",
.cv_folds = nrow(dat),
.R = 50)
str(cv_loocv, max.level = 2, list.len = 3)
### Permuation ---------------------------------------------------------------
res_perm <- resampleData(.data = dat, .resample_method = "permutation",
.id = "group")
str(res_perm, max.level = 2, list.len = 3)
# Forgetting to set .id causes an error
# }
# NOT RUN {
res_perm <- resampleData(.data = dat, .resample_method = "permutation")
# }
# NOT RUN {
# ===========================================================================
# Using a cSEMResults object
# ===========================================================================
model <- "
# Structural model
QUAL ~ EXPE
EXPE ~ IMAG
SAT ~ IMAG + EXPE + QUAL + VAL
LOY ~ IMAG + SAT
VAL ~ EXPE + QUAL
# Measurement model
EXPE =~ expe1 + expe2 + expe3 + expe4 + expe5
IMAG =~ imag1 + imag2 + imag3 + imag4 + imag5
LOY =~ loy1 + loy2 + loy3 + loy4
QUAL =~ qual1 + qual2 + qual3 + qual4 + qual5
SAT =~ sat1 + sat2 + sat3 + sat4
VAL =~ val1 + val2 + val3 + val4
"
a <- csem(satisfaction, model)
# Create bootstrap and jackknife samples
res_boot <- resampleData(a, .resample_method = "bootstrap", .R = 499)
res_jack <- resampleData(a, .resample_method = "jackknife")
# Since `satisfaction` is the dataset used the following approaches yield
# identical results.
res_boot_data <- resampleData(.data = satisfaction, .seed = 2364)
res_boot_object <- resampleData(a, .seed = 2364)
identical(res_boot_data, res_boot_object) # TRUE
# }
Run the code above in your browser using DataLab